Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 166(3): 766-778, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27453469

RESUMO

The ability to reliably and reproducibly measure any protein of the human proteome in any tissue or cell type would be transformative for understanding systems-level properties as well as specific pathways in physiology and disease. Here, we describe the generation and verification of a compendium of highly specific assays that enable quantification of 99.7% of the 20,277 annotated human proteins by the widely accessible, sensitive, and robust targeted mass spectrometric method selected reaction monitoring, SRM. This human SRMAtlas provides definitive coordinates that conclusively identify the respective peptide in biological samples. We report data on 166,174 proteotypic peptides providing multiple, independent assays to quantify any human protein and numerous spliced variants, non-synonymous mutations, and post-translational modifications. The data are freely accessible as a resource at http://www.srmatlas.org/, and we demonstrate its utility by examining the network response to inhibition of cholesterol synthesis in liver cells and to docetaxel in prostate cancer lines.


Assuntos
Bases de Dados de Proteínas , Proteoma , Acesso à Informação , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Colesterol/biossíntese , Docetaxel , Feminino , Humanos , Internet , Fígado/efeitos dos fármacos , Masculino , Mutação , Neoplasias da Próstata/tratamento farmacológico , Splicing de RNA , Taxoides/uso terapêutico
2.
J Proteome Res ; 19(12): 4754-4765, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33166149

RESUMO

Mass spectrometry has greatly improved the analysis of phosphorylation events in complex biological systems and on a large scale. Despite considerable progress, the correct identification of phosphorylated sites, their quantification, and their interpretation regarding physiological relevance remain challenging. The MS Resource Pillar of the Human Proteome Organization (HUPO) Human Proteome Project (HPP) initiated the Phosphopeptide Challenge as a resource to help the community evaluate methods, learn procedures and data analysis routines, and establish their own workflows by comparing results obtained from a standard set of 94 phosphopeptides (serine, threonine, tyrosine) and their nonphosphorylated counterparts mixed at different ratios in a neat sample and a yeast background. Participants analyzed both samples with their method(s) of choice to report the identification and site localization of these peptides, determine their relative abundances, and enrich for the phosphorylated peptides in the yeast background. We discuss the results from 22 laboratories that used a range of different methods, instruments, and analysis software. We reanalyzed submitted data with a single software pipeline and highlight the successes and challenges in correct phosphosite localization. All of the data from this collaborative endeavor are shared as a resource to encourage the development of even better methods and tools for diverse phosphoproteomic applications. All submitted data and search results were uploaded to MassIVE (https://massive.ucsd.edu/) as data set MSV000085932 with ProteomeXchange identifier PXD020801.


Assuntos
Fosfopeptídeos , Proteoma , Humanos , Espectrometria de Massas , Fosforilação , Proteômica
3.
Nat Methods ; 14(3): 259-262, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28135259

RESUMO

We describe ProteomeTools, a project building molecular and digital tools from the human proteome to facilitate biomedical research. Here we report the generation and multimodal liquid chromatography-tandem mass spectrometry analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products, and we exemplify the utility of these data in several applications. The resource (available at http://www.proteometools.org) will be extended to >1 million peptides, and all data will be shared with the community via ProteomicsDB and ProteomeXchange.


Assuntos
Cromatografia Líquida/métodos , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Bases de Dados de Proteínas , Genoma Humano/genética , Humanos
4.
J Proteome Res ; 18(12): 4262-4272, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31290668

RESUMO

Spectral matching sequence database search engines commonly used on mass spectrometry-based proteomics experiments excel at identifying peptide sequence ions, and in addition, possible sequence ions carrying post-translational modifications (PTMs), but most do not provide confidence metrics for the exact localization of those PTMs when several possible sites are available. Localization is absolutely required for downstream molecular cell biology analysis of PTM function in vitro and in vivo. Therefore, we developed PTMProphet, a free and open-source software tool integrated into the Trans-Proteomic Pipeline, which reanalyzes identified spectra from any search engine for which pepXML output is available to provide localization confidence to enable appropriate further characterization of biologic events. Localization of any type of mass modification (e.g., phosphorylation) is supported. PTMProphet applies Bayesian mixture models to compute probabilities for each site/peptide spectrum match where a PTM has been identified. These probabilities can be combined to compute a global false localization rate at any threshold to guide downstream analysis. We describe the PTMProphet tool, its underlying algorithms, and demonstrate its performance on ground-truth synthetic peptide reference data sets, one previously published small data set, one new larger data set, and also on a previously published phosphoenriched data set where the correct sites of modification are unknown. Data have been deposited to ProteomeXchange with identifier PXD013210.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica/métodos , Software , Algoritmos , Teorema de Bayes , Bases de Dados de Proteínas , Humanos , Fosfopeptídeos/metabolismo , Interface Usuário-Computador
5.
Nature ; 494(7436): 266-70, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23334424

RESUMO

Experience from different fields of life sciences suggests that accessible, complete reference maps of the components of the system under study are highly beneficial research tools. Examples of such maps include libraries of the spectroscopic properties of molecules, or databases of drug structures in analytical or forensic chemistry. Such maps, and methods to navigate them, constitute reliable assays to probe any sample for the presence and amount of molecules contained in the map. So far, attempts to generate such maps for any proteome have failed to reach complete proteome coverage. Here we use a strategy based on high-throughput peptide synthesis and mass spectrometry to generate an almost complete reference map (97% of the genome-predicted proteins) of the Saccharomyces cerevisiae proteome. We generated two versions of this mass-spectrometric map, one supporting discovery-driven (shotgun) and the other supporting hypothesis-driven (targeted) proteomic measurements. Together, the two versions of the map constitute a complete set of proteomic assays to support most studies performed with contemporary proteomic technologies. To show the utility of the maps, we applied them to a protein quantitative trait locus (QTL) analysis, which requires precise measurement of the same set of peptides over a large number of samples. Protein measurements over 78 S. cerevisiae strains revealed a complex relationship between independent genetic loci, influencing the levels of related proteins. Our results suggest that selective pressure favours the acquisition of sets of polymorphisms that adapt protein levels but also maintain the stoichiometry of functionally related pathway members.


Assuntos
Espectrometria de Massas , Proteoma/análise , Proteômica/métodos , Locos de Características Quantitativas/genética , Proteínas de Saccharomyces cerevisiae/análise , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Biblioteca de Peptídeos , Polimorfismo Genético , Proteoma/genética , Valores de Referência , Proteínas de Saccharomyces cerevisiae/genética , Seleção Genética
6.
Mol Cell Proteomics ; 15(3): 1151-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704149

RESUMO

Posttranslational modifications of proteins play an important role in biology. For example, phosphorylation is a key component in signal transduction in all three domains of life, and histones can be modified in such a variety of ways that a histone code for gene regulation has been proposed. Shotgun proteomics is commonly used to identify posttranslational modifications as well as chemical modifications from sample processing. However, it favors the detection of abundant peptides over the repertoire presented, and the data analysis usually requires advance specification of modification masses and target amino acids, their number constrained by available computational resources. Recent advances in data independent acquisition mass spectrometry technologies such as SWATH-MS enable a deeper recording of the peptide contents of samples, including peptides with modifications. Here, we present a novel approach that applies the power of SWATH-MS analysis to the automated pursuit of modified peptides. With the new SWATHProphet(PTM) functionality added to the open source SWATHProphet software, precursor ions consistent with a modification are identified along with the mass and localization of the modification in the peptide sequence in a sensitive and unrestricted manner without the need to anticipate the modifications in advance. Using this method, we demonstrate the detection of a wide assortment of modified peptides, many unanticipated, in samples containing unpurified synthetic peptides and human urine, as well as in phospho-enriched human tissue culture cell samples.


Assuntos
Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular Tumoral , Biologia Computacional/métodos , Histonas/química , Humanos , Peptídeos/urina , Fosforilação , Proteínas/metabolismo , Software
7.
J Dairy Sci ; 101(7): 6532-6541, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29655560

RESUMO

Mastitis is a major challenge to bovine health. The detection of sensitive markers for mastitis in dairy herds is of great demand. Suitable biomarkers should be measurable in milk and should report pathogen-specific changes at an early stage to support earlier diagnosis and more efficient treatment. However, the identification of sensitive biomarkers in milk has remained a challenge, in part due to their relatively low concentration in milk. In the present study, we used a selected reaction monitoring (SRM) mass spectrometry approach, which allowed the absolute quantitation of 13 host response proteins in milk for the first time. These proteins were measured over a 54-h period upon an in vivo challenge with cell wall components from either gram-negative (lipopolysaccharide from Escherichia coli; LPS) or gram-positive bacteria (peptidoglycan from Staphylococcus aureus; PGN). Whereas our data clearly demonstrate that all challenged animals have consistent upregulation of innate immune response proteins after both LPS and PGN challenge, the data also reveal clearly that LPS challenge unleashes faster and shows a more intense host response compared with PGN challenge. Biomarker candidates that may distinguish between gram-negative and gram-positive bacteria include α-2 macroglobulin, α-1 antitrypsin, haptoglobin, serum amyloid A3, cluster of differentiation 14, calgranulin B, cathepsin C, vanin-1, galectin 1, galectin 3, and IL-8. Our approach can support further studies of large cohorts of animals with natural occurring mastitis, to validate the relevance of these suggested biomarkers in dairy production.


Assuntos
Bovinos/imunologia , Imunidade Inata , Mastite Bovina/imunologia , Leite/imunologia , Proteínas de Fase Aguda , Animais , Biomarcadores/análise , Proteínas de Transporte , Feminino , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/microbiologia , Espectrometria de Massas , Mastite Bovina/metabolismo , Mastite Bovina/microbiologia , Glicoproteínas de Membrana , Leite/microbiologia , Staphylococcus aureus
8.
Proc Natl Acad Sci U S A ; 111(25): 9265-70, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24927537

RESUMO

Reversible protein phosphorylation determines growth and adaptive decisions in Mycobacterium tuberculosis (Mtb). At least 11 two-component systems and 11 Ser/Thr protein kinases (STPKs) mediate phosphorylation on Asp, His, Ser, and Thr. In contrast, protein phosphorylation on Tyr has not been described previously in Mtb. Here, using a combination of phospho-enrichment and highly sensitive mass spectrometry, we show extensive protein Tyr phosphorylation of diverse Mtb proteins, including STPKs. Several STPKs function as dual-specificity kinases that phosphorylate Tyr in cis and in trans, suggesting that dual-specificity kinases have a major role in bacterial phospho-signaling. Mutation of a phosphotyrosine site of the essential STPK PknB reduces its activity in vitro and in live Mtb, indicating that Tyr phosphorylation has a functional role in bacterial growth. These data identify a previously unrecognized phosphorylation system in a human pathogen that claims ∼ 1.4 million lives every year.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Bactérias/genética , Humanos , Mutação , Mycobacterium tuberculosis/genética , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética
9.
J Am Soc Nephrol ; 27(6): 1702-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26449608

RESUMO

CKD is the gradual, asymptomatic loss of kidney function, but current tests only identify CKD when significant loss has already happened. Several potential biomarkers of CKD have been reported, but none have been approved for preclinical or clinical use. Using RNA sequencing in a mouse model of folic acid-induced nephropathy, we identified ten genes that track kidney fibrosis development, the common pathologic finding in patients with CKD. The gene expression of all ten candidates was confirmed to be significantly higher (approximately ten- to 150-fold) in three well established, mechanistically distinct mouse models of kidney fibrosis than in models of nonfibrotic AKI. Protein expression of these genes was also high in the folic acid model and in patients with biopsy-proven kidney fibrosis. mRNA expression of the ten genes increased with increasing severity of kidney fibrosis, decreased in response to therapeutic intervention, and increased only modestly (approximately two- to five-fold) with liver fibrosis in mice and humans, demonstrating specificity for kidney fibrosis. Using targeted selected reaction monitoring mass spectrometry, we detected three of the ten candidates in human urine: cadherin 11 (CDH11), macrophage mannose receptor C1 (MRC1), and phospholipid transfer protein (PLTP). Furthermore, urinary levels of each of these three proteins distinguished patients with CKD (n=53) from healthy individuals (n=53; P<0.05). In summary, we report the identification of urinary CDH11, MRC1, and PLTP as novel noninvasive biomarkers of CKD.


Assuntos
Nefropatias/genética , Rim/patologia , Análise de Sequência de RNA , Animais , Fibrose/genética , Marcadores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas
10.
J Proteome Res ; 15(11): 3961-3970, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27490519

RESUMO

Every data-rich community research effort requires a clear plan for ensuring the quality of the data interpretation and comparability of analyses. To address this need within the Human Proteome Project (HPP) of the Human Proteome Organization (HUPO), we have developed through broad consultation a set of mass spectrometry data interpretation guidelines that should be applied to all HPP data contributions. For submission of manuscripts reporting HPP protein identification results, the guidelines are presented as a one-page checklist containing 15 essential points followed by two pages of expanded description of each. Here we present an overview of the guidelines and provide an in-depth description of each of the 15 elements to facilitate understanding of the intentions and rationale behind the guidelines, for both authors and reviewers. Broadly, these guidelines provide specific directions regarding how HPP data are to be submitted to mass spectrometry data repositories, how error analysis should be presented, and how detection of novel proteins should be supported with additional confirmatory evidence. These guidelines, developed by the HPP community, are presented to the broader scientific community for further discussion.


Assuntos
Guias como Assunto , Espectrometria de Massas/normas , Proteoma/química , Proteômica/organização & administração , Bases de Dados Factuais , Bases de Dados de Proteínas , Humanos , Proteômica/normas
11.
J Proteome Res ; 15(10): 3724-3740, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27575953

RESUMO

Organ-enriched blood proteins, those produced primarily in one organ and secreted or exported to the blood, potentially afford a powerful and specific approach to assessing diseases in their cognate organs. We demonstrate that quantification of organ-enriched proteins in the blood offers a new strategy to find biomarkers for diagnosis and assessment of drug-induced liver injury (and presumably the assessment of other liver diseases). We used selected reaction monitoring (SRM) mass spectrometry to quantify 81 liver-enriched proteins plus three aminotransferases (ALT1, AST1, and AST2) in plasma of C57BL/6J and NOD/ShiLtJ mice exposed to acetaminophen or carbon tetrachloride. Plasma concentrations of 49 liver-enriched proteins were perturbed significantly in response to liver injury induced by one or both toxins. We validated four of these toxin-responsive proteins (ALDOB, ASS1, BHMT, and GLUD1) by Western blotting. By both assays, these four proteins constitute liver injury markers superior to currently employed markers such as ALT and AST. A similar approach was also successful in human serum where we had analyzed 66 liver-enriched proteins in acetaminophen overdose patients. Of these, 23 proteins were elevated in patients; 15 of 23 overlapped with the concentration-increased proteins in the mouse study. A combination of 5 human proteins, AGXT, ALDOB, CRP, FBP1, and MMP9, provides the best diagnostic performance to distinguish acetaminophen overdose patients from controls (sensitivity: 0.85, specificity: 0.84, accuracy: 85%). These five blood proteins are candidates for detecting acetaminophen-induced liver injury using next-generation diagnostic devices (e.g, microfluidic ELISA assays).


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Proteômica/métodos , Acetaminofen/administração & dosagem , Adulto , Idoso , Animais , Biomarcadores/sangue , Análise Química do Sangue , Tetracloreto de Carbono/administração & dosagem , Tetracloreto de Carbono/toxicidade , Overdose de Drogas/diagnóstico , Humanos , Camundongos , Pessoa de Meia-Idade
12.
Clin Chem ; 62(1): 48-69, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26719571

RESUMO

BACKGROUND: For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT: The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care.


Assuntos
Técnicas de Laboratório Clínico , Espectrometria de Massas , Peptídeos/análise , Proteômica , Manejo de Espécimes , Guias como Assunto , Humanos , Peptídeos/isolamento & purificação , Pesquisadores
13.
Chemphyschem ; 17(9): 1314-20, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-26918674

RESUMO

The triple-helical structure of a model collagen peptide possessing azobenzene-derived clamps integrated in all three strands as side-chain-to-side-chain crosslinks is analyzed by IR spectroscopy in comparative thermal excursion experiments with the triple helix of a typical reference collagen peptide consisting of only glycine-proline-hydroxyproline repeats. By exploiting the known stabilizing effects of aqueous alcoholic solvents on the unique collagen fold, deuterated ethylene glycol/water (1:1) is used as a solvent to investigate the effect of the light-switchable trans/cis-azobenzene clamp on the stability of the triple helix in terms of H/D exchange rates and thermal unfolding. Results of this comparative analysis clearly reveal only a minor destabilization of the triple helix by the hydrophobic azobenzene moieties compared to the reference collagen peptide as reflected by a lower midpoint of the thermal unfolding and higher rates of H/D exchange. However, it also reveals that the driving force exerted by the trans-to-cis photoisomerization of the azobenzene moieties is insufficient for unfolding of the compact triple-helical collagen fold. Only temperature-dependent untightening of this fold with heating results in a reversible photomodulated unfolding and refolding of the azo-collagen peptide into the original triple helix.


Assuntos
Compostos Azo/química , Colágeno/química , Peptídeos/química , Espectrofotometria Infravermelho/métodos , Sequência de Aminoácidos , Desnaturação Proteica , Dobramento de Proteína , Temperatura
14.
Mol Cell Proteomics ; 13(10): 2618-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24997998

RESUMO

Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease.


Assuntos
Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais
15.
J Proteome Res ; 14(9): 3461-73, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26139527

RESUMO

The Human PeptideAtlas is a compendium of the highest quality peptide identifications from over 1000 shotgun mass spectrometry proteomics experiments collected from many different laboratories, all reanalyzed through a uniform processing pipeline. The latest 2015-03 build contains substantially more input data than past releases, is mapped to a recent version of our merged reference proteome, and uses improved informatics processing and the development of the AtlasProphet to provide the highest quality results. Within the set of ∼20,000 neXtProt primary entries, 14,070 (70%) are confidently detected in the latest build, 5% are ambiguous, 9% are redundant, leaving the total percentage of proteins for which there are no mapping detections at just 16% (3166), all derived from over 133 million peptide-spectrum matches identifying more than 1 million distinct peptides using AtlasProphet to characterize and classify the protein matches. Improved handling for detection and presentation of single amino-acid variants (SAAVs) reveals the detection of 5326 uniquely mapping SAAVs across 2794 proteins. With such a large amount of data, the control of false positives is a challenge. We present the methodology and results for maintaining rigorous quality along with a discussion of the implications of the remaining sources of errors in the build.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Proteômica , Sequência de Aminoácidos , Substituição de Aminoácidos , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
16.
Anal Chem ; 87(24): 12230-7, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26560994

RESUMO

High-field asymmetric waveform ion mobility spectrometry (FAIMS) is an atmospheric pressure ion mobility technique that separates gas phase ions according to their characteristic dependence of ion mobility on electric field strength. FAIMS can be implemented as a means of automated gas-phase fractionation in liquid chromatography-tandem mass spectrometry (LC-MS/MS) experiments. We modified a commercially available cylindrical FAIMS device by enlarging the inner electrode, thereby narrowing the gap and increasing the effective field strength. This modification provided a nearly 4-fold increase in FAIMS peak capacity over the optimally configured unmodified device. We employed the modified FAIMS device for on-line fractionation in a proteomic analysis of a complex sample and observed major increases in protein discovery. NanoLC-FAIMS-MS/MS of an unfractionated yeast tryptic digest using the modified FAIMS device identified 53% more proteins than were identified using an unmodified FAIMS device and 98% more proteins than were identified with unaided nanoLC-MS/MS. We describe here the development of a nanoLC-FAIMS-MS/MS protocol that provides automated gas-phase fractionation for proteomic analysis of complex protein digests. We compare this protocol against prefractionation of peptides with isoelectric focusing and demonstrate that FAIMS fractionation yields comparable protein recovery while significantly reducing the amount of sample required and eliminating the need for additional sample handling.


Assuntos
Espectrometria de Massas/instrumentação , Proteínas/análise , Humanos , Lasers , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
17.
PLoS Pathog ; 9(10): e1003700, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204260

RESUMO

HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs) into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45⁺ microvesicles (MV) which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45⁺ MVs was shown to enhance DC maturation and ICAM-1 (CD54) expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24⁺) MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs) and nef were the likely DC maturation candidates. Recombinant HSP90α and ß and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1 infected subjects.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/virologia , Infecções por HIV/imunologia , HIV-1/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Adesão Celular/imunologia , Células Cultivadas , Células Dendríticas/patologia , Infecções por HIV/patologia , Humanos , Monócitos/imunologia , Monócitos/patologia , Linfócitos T/patologia
18.
Mol Cell Proteomics ; 12(4): 1005-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408683

RESUMO

Protein biomarkers have the potential to transform medicine as they are clinically used to diagnose diseases, stratify patients, and follow disease states. Even though a large number of potential biomarkers have been proposed over the past few years, almost none of them have been implemented so far in the clinic. One of the reasons for this limited success is the lack of technologies to validate proposed biomarker candidates in larger patient cohorts. This limitation could be alleviated by the use of antibody-independent validation methods such as selected reaction monitoring (SRM). Similar to measurements based on affinity reagents, SRM-based targeted mass spectrometry also requires the generation of definitive assays for each targeted analyte. Here, we present a library of SRM assays for 5568 N-glycosites enabling the multiplexed evaluation of clinically relevant N-glycoproteins as biomarker candidates. We demonstrate that this resource can be utilized to select SRM assay sets for cancer-associated N-glycoproteins for their subsequent multiplexed and consistent quantification in 120 human plasma samples. We show that N-glycoproteins spanning 5 orders of magnitude in abundance can be quantified and that previously reported abundance differences in various cancer types can be recapitulated. Together, the established N-glycoprotein SRMAtlas resource facilitates parallel, efficient, consistent, and sensitive evaluation of proposed biomarker candidates in large clinical sample cohorts.


Assuntos
Antígenos Glicosídicos Associados a Tumores/sangue , Glicoproteínas/sangue , Proteínas de Neoplasias/sangue , Neoplasias/sangue , Animais , Antígenos Glicosídicos Associados a Tumores/química , Estudos de Casos e Controles , Glicoproteínas/química , Humanos , Camundongos , Anotação de Sequência Molecular , Proteínas de Neoplasias/química , Biblioteca de Peptídeos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem/métodos
19.
Mol Cell Proteomics ; 12(8): 2148-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23645497

RESUMO

Epithelial-mesenchymal transition (EMT) is a highly conserved morphogenic process defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. EMT is associated with increased aggressiveness, invasiveness, and metastatic potential in carcinoma cells. To assess the contribution of extracellular vesicles following EMT, we conducted a proteomic analysis of exosomes released from Madin-Darby canine kidney (MDCK) cells, and MDCK cells transformed with oncogenic H-Ras (21D1 cells). Exosomes are 40-100 nm membranous vesicles originating from the inward budding of late endosomes and multivesicular bodies and are released from cells on fusion of multivesicular bodies with the plasma membrane. Exosomes from MDCK cells (MDCK-Exos) and 21D1 cells (21D1-Exos) were purified from cell culture media using density gradient centrifugation (OptiPrep™), and protein content identified by GeLC-MS/MS proteomic profiling. Both MDCK- and 21D1-Exos populations were morphologically similar by cryo-electron microscopy and contained stereotypical exosome marker proteins such as TSG101, Alix, and CD63. In this study we show that the expression levels of typical EMT hallmark proteins seen in whole cells correlate with those observed in MDCK- and 21D1-Exos, i.e. reduction of characteristic inhibitor of angiogenesis, thrombospondin-1, and epithelial markers E-cadherin, and EpCAM, with a concomitant up-regulation of mesenchymal makers such as vimentin. Further, we reveal that 21D1-Exos are enriched with several proteases (e.g. MMP-1, -14, -19, ADAM-10, and ADAMTS1), and integrins (e.g. ITGB1, ITGA3, and ITGA6) that have been recently implicated in regulating the tumor microenvironment to promote metastatic progression. A salient finding of this study was the unique presence of key transcriptional regulators (e.g. the master transcriptional regulator YBX1) and core splicing complex components (e.g. SF3B1, SF3B3, and SFRS1) in mesenchymal 21D1-Exos. Taken together, our findings reveal that exosomes from Ras-transformed MDCK cells are reprogrammed with factors which may be capable of inducing EMT in recipient cells.


Assuntos
Transição Epitelial-Mesenquimal , Exossomos/metabolismo , Proteínas ras/metabolismo , Animais , Anexinas/metabolismo , Transformação Celular Neoplásica/metabolismo , Cães , Genes ras , Integrinas/metabolismo , Células Madin Darby de Rim Canino , Peptídeo Hidrolases/metabolismo , Proteoma , Tetraspaninas/metabolismo
20.
Geroscience ; 46(2): 1543-1560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37653270

RESUMO

Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.


Assuntos
Longevidade , Proteoma , Camundongos , Animais , Longevidade/genética , Proteoma/metabolismo , Proteômica , Fatores de Transcrição/genética , Receptores da Somatotropina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA