Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 189(3): 577-586, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30506303

RESUMO

Ecosystem engineers create physical changes in abiotic and biotic material, and through this process control the availability of resources for other species. Predators that abandon large portions of their prey may be ecosystem engineers that create habitat for carrion-dependent invertebrates that utilize carcasses during critical life-history periods. Between 04-May-2016 and 04-Oct-2016, we sampled beetle assemblages at 18 carcasses of prey killed by pumas and matching control sites in the southern Greater Yellowstone Ecosystem, USA, to measure the extent to which beetle families utilized these carcass "habitats". We used generalized linear-mixed models and linear-mixed effect models to examine changes in beetle abundance, species richness, and Simpson's Index of Diversity. We estimated kill rates and carrion production rates for individual pumas to better assess the impact of pumas on invertebrate communities. We collected 24,209 beetles representing 215 species. We identified eight beetle families that had significantly higher abundance at carcasses than control sites. Carcasses had a statistically large to very large effect (determined using Cohen's d) on beetle abundance, richness, and diversity for the initial 8 weeks of sampling. Our research revealed strong effects of an ecosystem engineer on beetle assemblages while highlighting the potential role of apex predators in creating and modifying physical habitats for carrion-dependent species. This suggests that there may be consequences for invertebrate communities where apex predators exist at reduced numbers or have been eradicated. The ecological role of invertebrates is often overlooked, yet they are essential taxa that provide critical ecological services upon which we depend.


Assuntos
Besouros , Puma , Animais , Biodiversidade , Ecologia , Ecossistema
2.
Mov Ecol ; 10(1): 16, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361272

RESUMO

BACKGROUND: Prey depletion is a threat to the world's large carnivores, and is likely to affect subordinate competitors within the large carnivore guild disproportionately. African lions limit African wild dog populations through interference competition and intraguild predation. When lion density is reduced as a result of prey depletion, wild dogs are not competitively released, and their population density remains low. Research examining distributions has demonstrated spatial avoidance of lions by wild dogs, but the effects of lions on patterns of movement have not been tested. Movement is one of the most energetically costly activities for many species and is particularly costly for cursorial hunters like wild dogs. Therefore, testing how top-down, bottom-up, and anthropogenic variables affect movement patterns can provide insight into mechanisms that limit wild dogs (and other subordinate competitors) in resource-depleted ecosystems. METHODS: We measured movement rates using the motion variance from dynamic Brownian Bridge Movement Models (dBBMMs) fit to data from GPS-collared wild dogs, then used a generalized linear model to test for effects on movement of predation risk from lions, predictors of prey density, and anthropogenic and seasonal variables. RESULTS: Wild dogs proactively reduced movement in areas with high lion density, but reactively increased movement when lions were immediately nearby. Predictors of prey density had consistently weaker effects on movement than lions did, but movements were reduced in the wet season and when dependent offspring were present. CONCLUSION: Wild dogs alter their patterns of movement in response to lions in ways that are likely to have important energetic consequences. Our results support the recent suggestion that competitive limitation of wild dogs by lions remains strong in ecosystems where lion and wild dog densities are both low as a result of anthropogenic prey depletion. Our results reinforce an emerging pattern that movements often show contrasting responses to long-term and short-term variation in predation risk.

3.
PeerJ ; 6: e4293, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29379688

RESUMO

BACKGROUND: Interspecific competition affects species fitness, community assemblages and structure, and the geographic distributions of species. Established dominance hierarchies among species mitigate the need for fighting and contribute to the realized niche for subordinate species. This is especially important for apex predators, many of which simultaneous contend with the costs of competition with more dominant species and the costs associated with human hunting and lethal management. METHODS: Pumas are a widespread solitary felid heavily regulated through hunting to reduce conflicts with livestock and people. Across their range, pumas overlap with six apex predators (gray wolf, grizzly bear, American black bear, jaguar, coyote, maned wolf), two of which (gray wolf, grizzly bear) are currently expanding in North America following recovery efforts. We conducted a literature search to assess whether pumas were subordinate or dominant with sympatric apex predators, as well as with three felid mesocarnivores with similar ecology (ocelot, bobcat, Canada lynx). We also conducted an analysis of the spatial distributions of pumas and their dominant sympatric competitors to estimate in what part of their range, pumas are dominant versus subordinate. RESULTS: We used 64 sources to assess dominance among pumas and other apex predators, and 13 sources to assess their relationships with felid mesocarnivores. Evidence suggested that wolves, grizzly bears, black bears, and jaguars are dominant over pumas, but that pumas are dominant over coyotes and maned wolves. Evidence suggested that pumas are also dominant over all three felid mesocarnivores with which they share range. More broadly, pumas are subordinate to at least one other apex carnivore in 10,799,252 (47.5%) of their 22,735,268 km2 range across North and South America. DISCUSSION: Subordinate pumas change their habitat use, suffer displacement at food sources, likely experience increased energetic demands from harassment, exhibit increased starvation, and are sometimes directly killed in competitive interactions with dominant competitors. Nevertheless, we lack research clearly linking the costs of competition to puma fitness. Further, we lack research that assesses the influence of human effects simultaneous with the negative effects of competition with other sympatric carnivores. Until the time that we understand whether competitive effects are additive with human management, or even potentially synergistic, we encourage caution among managers responsible for determining harvest limits for pumas and other subordinate, apex carnivores in areas where they are sympatric with dominant species. This may be especially important information for managers working in regions where wolves and brown bears are recolonizing and recovering, and historic competition scenarios among multiple apex predators are being realized.

4.
PeerJ ; 5: e4010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29158967

RESUMO

As technology has improved, our ability to study cryptic animal behavior has increased. Bed site selection is one such example. Among prey species, bed site selection provides thermoregulatory benefits and mitigates predation risk, and may directly influence survival. We conducted research to test whether a subordinate carnivore also selected beds with similar characteristics in an ecosystem supporting a multi-species guild of competing predators. We employed a model comparison approach in which we tested whether cougar (Puma concolor) bed site attributes supported the thermoregulatory versus the predator avoidance hypotheses, or exhibited characteristics supporting both hypotheses. Between 2012-2016, we investigated 599 cougar bed sites in the Greater Yellowstone Ecosystem and examined attributes at two scales: the landscape (second-order, n = 599) and the microsite (fourth order, n = 140). At the landscape scale, cougars selected bed sites in winter that supported both the thermoregulatory and predator avoidance hypotheses: bed sites were on steeper slopes but at lower elevations, closer to the forest edge, away from sagebrush and meadow habitat types, and on southern, eastern, and western-facing slopes. In the summer, bed attributes supported the predator avoidance hypothesis over the thermoregulation hypothesis: beds were closer to forest edges, away from sagebrush and meadow habitat classes, and on steeper slopes. At the microsite scale, cougar bed attributes in both the winter and summer supported both the predator avoidance and thermoregulatory hypotheses: they selected bed sites with high canopy cover, high vegetative concealment, and in a rugged habitat class characterized by cliff bands and talus fields. We found that just like prey species, a subordinate predator selected bed sites that facilitated both thermoregulatory and anti-predator functions. In conclusion, we believe that measuring bed site attributes may provide a novel means of measuring the use of refugia by subordinate predators, and ultimately provide new insights into the habitat requirements and energetics of subordinate carnivores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA