Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosci Lett ; 407(3): 258-62, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-16978778

RESUMO

Synaptosomal-associated protein of 25kDa (SNAP-25), a member of the SNARE proteins essential for neurotransmitter release, is phosphorylated at Ser(187) in PC12 cells and in the rat brain in a protein kinase C-dependent manner. It remains unclear how the phosphorylation of SNAP-25 is regulated during development and by neuronal activity. We studied the mode of SNAP-25 phosphorylation at Ser(187) in the rat brain using an anti-phosphorylated SNAP-25 antibody. Both the expression and phosphorylation of SNAP-25 increased remarkably during the early postnatal period, but their onsets were quite different. SNAP-25 expression was detected as early as embryonic Day 18, whereas the phosphorylation of SNAP-25 could not be detected until postnatal Day 4. A delay in the onset of phosphorylation was also observed in cultured rat hippocampal neurons. The phosphorylation of SNAP-25 was regulated in a neuronal activity-dependent manner and, in the rat hippocampus, decreased by introducing seizures with kainic acid. These results clearly indicated that the phosphorylation of SNAP-25 at Ser(187) is regulated in development- and neuronal activity-dependent manners, and is likely to play important roles in higher brain functions.


Assuntos
Encéfalo/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Células Cultivadas , Feminino , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Ácido Caínico , Masculino , Neurônios/metabolismo , Fosforilação , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/metabolismo , Serina/metabolismo , Proteína 25 Associada a Sinaptossoma/biossíntese
2.
PLoS One ; 6(1): e16182, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21249204

RESUMO

Epidermal melanocytes play an important role in protecting the skin from UV rays, and their functional impairment results in pigment disorders. Additionally, melanomas are considered to arise from mutations that accumulate in melanocyte stem cells. The mechanisms underlying melanocyte differentiation and the defining characteristics of melanocyte stem cells in humans are, however, largely unknown. In the present study, we set out to generate melanocytes from human iPS cells in vitro, leading to a preliminary investigation of the mechanisms of human melanocyte differentiation. We generated iPS cell lines from human dermal fibroblasts using the Yamanaka factors (SOX2, OCT3/4, and KLF4, with or without c-MYC). These iPS cell lines were subsequently used to form embryoid bodies (EBs) and then differentiated into melanocytes via culture supplementation with Wnt3a, SCF, and ET-3. Seven weeks after inducing differentiation, pigmented cells expressing melanocyte markers such as MITF, tyrosinase, SILV, and TYRP1, were detected. Melanosomes were identified in these pigmented cells by electron microscopy, and global gene expression profiling of the pigmented cells showed a high similarity to that of human primary foreskin-derived melanocytes, suggesting the successful generation of melanocytes from iPS cells. This in vitro differentiation system should prove useful for understanding human melanocyte biology and revealing the mechanism of various pigment cell disorders, including melanoma.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Melanócitos/citologia , Técnicas de Cultura de Células/métodos , Corpos Embrioides , Fibroblastos/citologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/farmacologia , Fator 3 de Transcrição de Octâmero/farmacologia , Fatores de Transcrição SOXB1/farmacologia , Pele/citologia
3.
PLoS One ; 6(9): e25158, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21949876

RESUMO

Synaptosomal-associated protein of 25 kDa (SNAP-25) is a presynaptic protein essential for neurotransmitter release. Previously, we demonstrate that protein kinase C (PKC) phosphorylates Ser(187) of SNAP-25, and enhances neurotransmitter release by recruiting secretory vesicles near to the plasma membrane. As PKC is abundant in the brain and SNAP-25 is essential for synaptic transmission, SNAP-25 phosphorylation is likely to play a crucial role in the central nervous system. We therefore generated a mutant mouse, substituting Ser(187) of SNAP-25 with Ala using "knock-in" technology. The most striking effect of the mutation was observed in their behavior. The homozygous mutant mice froze readily in response to environmental change, and showed strong anxiety-related behavior in general activity and light and dark preference tests. In addition, the mutant mice sometimes exhibited spontaneously occurring convulsive seizures. Microdialysis measurements revealed that serotonin and dopamine release were markedly reduced in amygdala. These results clearly indicate that PKC-dependent SNAP-25 phosphorylation plays a critical role in the regulation of emotional behavior as well as the suppression of epileptic seizures, and the lack of enhancement of monoamine release is one of the possible mechanisms underlying these defects.


Assuntos
Ansiedade/etiologia , Mutação/genética , Proteína Quinase C/metabolismo , Proteína 25 Associada a Sinaptossoma/fisiologia , Substituição de Aminoácidos , Animais , Ansiedade/psicologia , Comportamento Animal , Northern Blotting , Western Blotting , Membrana Celular/metabolismo , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Vesículas Secretórias/metabolismo
4.
J Neurochem ; 94(2): 502-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15998300

RESUMO

Recent studies have indicated that various growth factors are involved in synaptic functions; however, the precise mechanisms remain unclear. In order to elucidate the molecular mechanisms of the growth factor-mediated regulation of presynaptic functions, the effects of epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) on neurotransmitter release were studied in rat PC12 cells. Brief treatment with EGF and IGF-1 enhanced Ca2+-dependent dopamine release in a concentration-dependent manner. EGF activated both mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-kinase) pathways, and the EGF-dependent enhancement of DA release was suppressed by a MAPK kinase inhibitor as well as by PI3-kinase inhibitors. In striking contrast, IGF-1 activated the PI3-kinase pathway but not the MAPK pathway, and IGF-1-dependent enhancement was suppressed by a PI3-kinase inhibitor but not by a MAPK kinase inhibitor. The enhanced green fluorescent protein-tagged pleckstrin homology (PH) domain of protein kinase B, which selectively binds to phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate, was translocated to the plasma membrane after treatment with either EGF or NGF. By contrast, no significant redistribution was induced by IGF-1. These results indicate that PI3-kinase participates in the enhancement of neurotransmitter release by two distinct mechanisms: EGF and NGF activate PI3-kinase in the plasma membrane, whereas IGF-1 activates PI3-kinase possibly in the intracellular membrane, leading to enhancement of neurotransmitter release in a MAPK-dependent and -independent manner respectively.


Assuntos
Membrana Celular/metabolismo , Dopamina/metabolismo , Espaço Extracelular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Western Blotting/métodos , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Espaço Extracelular/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/farmacocinética , Fator de Crescimento Insulin-Like I/farmacologia , Ionomicina/farmacologia , Ionóforos/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células PC12/efeitos dos fármacos , Células PC12/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/farmacocinética , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas/farmacocinética , Proteínas Proto-Oncogênicas c-akt , Ratos , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 102(38): 13467-72, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16174741

RESUMO

A striking variety of glycosylation occur in the Golgi complex in a protein-specific manner, but how this diversity and specificity are achieved remains unclear. Here we show that stacked fragments (units) of the Golgi complex dispersed in Drosophila imaginal disk cells are functionally diverse. The UDP-sugar transporter FRINGE-CONNECTION (FRC) is localized to a subset of the Golgi units distinct from those harboring SULFATELESS (SFL), which modifies glucosaminoglycans (GAGs), and from those harboring the protease RHOMBOID (RHO), which processes the glycoprotein SPITZ (SPI). Whereas the glycosylation and function of NOTCH are affected in imaginal disks of frc mutants, those of SPI and of GAG core proteins are not, even though FRC transports a broad range of glycosylation substrates, suggesting that Golgi units containing FRC and those containing SFL or RHO are functionally separable. Distinct Golgi units containing FRC and RHO in embryos could also be separated biochemically by immunoisolation techniques. We also show that Tn-antigen glycan is localized only in a subset of the Golgi units distributed basally in a polarized cell. We propose that the different localizations among distinct Golgi units of molecules involved in glycosylation underlie the diversity of glycan modification.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Complexo de Golgi/metabolismo , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Proteínas de Drosophila/genética , Glicosilação , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA