Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 63(4): 450-462, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35086143

RESUMO

The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
2.
Plant Physiol ; 185(2): 533-546, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33655297

RESUMO

The Raf-like protein kinase abscisic acid (ABA) and abiotic stress-responsive Raf-like kinase (ARK) previously identified in the moss Physcomitrium (Physcomitrella) patens acts as an upstream regulator of subgroup III SNF1-related protein kinase2 (SnRK2), the key regulator of ABA and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2, including the role of ABA receptor-associated group A PP2C (PP2C-A), are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic P. patens ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance, and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in the wild type (WT). The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking protein phosphatase 2C-A (PP2C-A) was similar to that in the WT, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense mutant lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. Therefore, ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototype mechanism for ABA and abiotic stress responses in plants.


Assuntos
Ácido Abscísico/farmacologia , Bryopsida/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Bryopsida/enzimologia , Bryopsida/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Fusão Gênica , Genes Reporter , Mutação de Sentido Incorreto , Fosfopeptídeos/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estresse Fisiológico
3.
Mol Pharm ; 19(2): 558-567, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958576

RESUMO

Stapled peptides are a promising class of conformationally restricted peptides for modulating protein-protein interactions (PPIs). However, the low membrane permeability of these peptides is an obstacle to their therapeutic applications. It is common that only a few hydrophobic amino acid residues are mandatory for stapled peptides to bind to their target proteins. Hoping to create a novel class of membrane-permeable PPI inhibitors, the phenylalanine, tryptophan, and leucine residues that play a critical role in inhibiting the p53-HDM2 interaction were grafted into the framework of CADY2─a cell-penetrating peptide (CPP) having a helical propensity. Two analogues (CADY-3FWL and CADY-10FWL) induced apoptotic cell death but lacked the intended HDM2 interaction. Pull-down experiments followed by proteomic analysis led to the elucidation of nesprin-2 as a candidate binding target. Nesprin-2 is considered to play a role in the nuclear translocation of ß-catenin upon activation of the Wnt signaling pathway, which leads to the expression of antiapoptosis proteins and cell survival. Cells treated with the two analogues showed decreased nuclear localization of ß-catenin and reduced mRNA expression of related antiapoptotic proteins. These data suggest inhibition of ß-catenin nuclear translocation as a possible mode of action of the described cell-penetrating stapled peptides.


Assuntos
Peptídeos Penetradores de Células , Aminoácidos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Proteômica , Via de Sinalização Wnt
4.
Proc Natl Acad Sci U S A ; 116(23): 11528-11536, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31097584

RESUMO

The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Caseína Quinase I/genética , Relógios Circadianos/genética , Fatores de Transcrição/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/genética , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Transcrição Gênica/genética
5.
Am J Respir Cell Mol Biol ; 65(3): 319-330, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34264172

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by the invariably progressive deposition of fibrotic tissue in the lungs and overall poor prognosis. TG2 (transglutaminase 2) is an enzyme that crosslinks glutamine and lysine residues and is involved in IPF pathogenesis. Despite the accumulating evidence implicating TG2 as a critical enzyme, the causative function and direct target of TG2 relating to this pathogenesis remain unelucidated. Here, we clarified the distributions of TG2 protein/activity and conducted quantitative proteomics analyses of possible substrates crosslinked by TG2 on unfixed lung sections in a mouse pulmonary fibrosis model. We identified 126 possible substrates as markedly TG2-dependently increased in fibrotic lung. Gene ontology analysis revealed that these identified proteins were mostly enriched in the lipid metabolic process, immune system process, and protein transport. In addition, these proteins were enriched in 21 pathways, including phagosome, lipid metabolism, several immune responses, and protein processing in endoplasmic reticulum. Furthermore, the network analyses screened out the six clusters and top 20 hub proteins with higher scores, which are related to endoplasmic reticulum stress and peroxisome proliferator-activated receptor signals. Several enriched pathways and categories were identified, some of which were the same terms based on transcription analysis in IPF. Our results provide novel pathological molecular networks driven by protein crosslinking via TG2, which can lead to the development of new therapeutic targets for IPF.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Pulmão/enzimologia , Proteômica , Fibrose Pulmonar/epidemiologia , Transdução de Sinais , Transglutaminases/metabolismo , Animais , Pulmão/patologia , Camundongos , Proteína 2 Glutamina gama-Glutamiltransferase , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia
6.
EMBO J ; 36(11): 1513-1527, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28483815

RESUMO

Sister chromatid cohesion is crucial to ensure chromosome bi-orientation and equal chromosome segregation. Cohesin removal via mitotic kinases and Wapl has to be prevented in pericentromeric regions in order to protect cohesion until metaphase, but the mechanisms of mitotic cohesion protection remain elusive in Drosophila Here, we show that dalmatian (Dmt), an ortholog of the vertebrate cohesin-associated protein sororin, is required for protection of mitotic cohesion in flies. Dmt is essential for cohesion establishment during interphase and is enriched on pericentromeric heterochromatin. Dmt is recruited through direct association with heterochromatin protein-1 (HP1), and this interaction is required for cohesion. During mitosis, Dmt interdependently recruits protein phosphatase 2A (PP2A) to pericentromeric regions, and PP2A binding is required for Dmt to protect cohesion. Intriguingly, Dmt is sufficient to protect cohesion upon heterologous expression in human cells. Our findings of a hybrid system, in which Dmt exerts both sororin-like establishment functions and shugoshin-like heterochromatin-based protection roles, provide clues to the evolutionary modulation of eukaryotic cohesion regulation systems.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Mitose , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Humanos , Fosfoproteínas Fosfatases/metabolismo
7.
Nat Chem Biol ; 15(3): 250-258, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30643284

RESUMO

Irreversible inhibition of disease-associated proteins with small molecules is a powerful approach for achieving increased and sustained pharmacological potency. Here, we introduce α-chlorofluoroacetamide (CFA) as a novel warhead of targeted covalent inhibitor (TCI). Despite weak intrinsic reactivity, CFA-appended quinazoline showed high reactivity toward Cys797 of epidermal growth factor receptor (EGFR). In cells, CFA-quinazoline showed higher target specificity for EGFR than the corresponding Michael acceptors in a wide concentration range (0.1-10 µM). The cysteine adduct of the CFA derivative was susceptible to hydrolysis and reversibly yielded intact thiol but was stable in solvent-sequestered ATP-binding pocket of EGFR. This environment-dependent hydrolysis can potentially reduce off-target protein modification by CFA-based drugs. Oral administration of CFA quinazoline NS-062 significantly suppressed tumor growth in a mouse xenograft model. Further, CFA-appended pyrazolopyrimidine irreversibly inhibited Bruton's tyrosine kinase with higher target specificity. These results demonstrate the utility of CFA as a new class warheads for TCI.


Assuntos
Acetamidas/síntese química , Cisteína/metabolismo , Quinazolinas/síntese química , Acetamidas/química , Acetamidas/farmacologia , Animais , Antineoplásicos , Linhagem Celular , Receptores ErbB , Humanos , Camundongos , Camundongos Nus , Neoplasias , Fosfotransferases/fisiologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/antagonistas & inibidores , Quinazolinas/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioorg Med Chem Lett ; 39: 127850, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662538

RESUMO

We report the synthesis of a peptide nucleic acid (PNA) monomer containing preQ1, a positively charged guanine analogue. The new monomer was incorporated into PNA oligomers using standard Fmoc-chemistry-based solid-phase synthesis. The preQ1 unit-containing PNA oligomers exhibited improved affinity for their complementary DNA through electrostatic attraction, and their sequence specificity was not compromised. It could be beneficial to incorporate preQ1 into PNA oligomers instead of guanine when creating antisense/antigene agents or research tools.


Assuntos
Ácidos Nucleicos Peptídicos/síntese química , Pirimidinonas/química , Pirróis/química , Estrutura Molecular , Ácidos Nucleicos Peptídicos/química
9.
Int J Mol Sci ; 22(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503978

RESUMO

Apoptosis-linked gene 2 (ALG-2, also known as PDCD6) is a member of the penta-EF-hand (PEF) family of Ca2+-binding proteins. The murine gene encoding ALG-2 was originally reported to be an essential gene for apoptosis. However, the role of ALG-2 in cell death pathways has remained elusive. In the present study, we found that cell death-inducing p53 target protein 1 (CDIP1), a pro-apoptotic protein, interacts with ALG-2 in a Ca2+-dependent manner. Co-immunoprecipitation analysis of GFP-fused CDIP1 (GFP-CDIP1) revealed that GFP-CDIP1 associates with tumor susceptibility gene 101 (TSG101), a known target of ALG-2 and a subunit of endosomal sorting complex required for transport-I (ESCRT-I). ESCRT-I is a heterotetrameric complex composed of TSG101, VPS28, VPS37 and MVB12/UBAP1. Of diverse ESCRT-I species originating from four VPS37 isoforms (A, B, C, and D), CDIP1 preferentially associates with ESCRT-I containing VPS37B or VPS37C in part through the adaptor function of ALG-2. Overexpression of GFP-CDIP1 in HEK293 cells caused caspase-3/7-mediated cell death. In addition, the cell death was enhanced by co-expression of ALG-2 and ESCRT-I, indicating that ALG-2 likely promotes CDIP1-induced cell death by promoting the association between CDIP1 and ESCRT-I. We also found that CDIP1 binds to vesicle-associated membrane protein-associated protein (VAP)A and VAPB through the two phenylalanines in an acidic tract (FFAT)-like motif in the C-terminal region of CDIP1, mutations of which resulted in reduction of CDIP1-induced cell death. Therefore, our findings suggest that different expression levels of ALG-2, ESCRT-I subunits, VAPA and VAPB may have an impact on sensitivity of anticancer drugs associated with CDIP1 expression.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Reguladoras de Apoptose/genética , Sítios de Ligação , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Morte Celular/genética , Linhagem Celular , Humanos , Ligação Proteica , Relação Estrutura-Atividade
10.
Biochemistry ; 59(33): 3044-3050, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786409

RESUMO

The ability to chemically introduce lipid modifications to specific intracellular protein targets would enable the conditional control of protein localization and activity in living cells. We recently developed a chemical-genetic approach in which an engineered SNAP-tag fusion protein can be rapidly relocated and anchored from the cytoplasm to the plasma membrane (PM) upon post-translational covalent lipopeptide conjugation in cells. However, the first-generation system achieved only low to moderate protein anchoring (recruiting) efficiencies and lacked wide applicability. Herein, we describe the rational design of an improved system for intracellular synthetic lipidation-induced PM anchoring of SNAP-tag fusion proteins. In the new system, the SNAPf protein engineered to contain an N-terminal hexalysine (K6) sequence and a C-terminal 10-amino acid deletion, termed K6-SNAPΔ, is fused to a protein of interest. In addition, a SNAP-tag substrate containing a metabolic-resistant myristoyl-DCys lipopeptidomimetic, called mDcBCP, is used as a cell-permeable chemical probe for intracellular SNAP-tag lipidation. The use of this combination allows significantly improved conditional PM anchoring of SNAP-tag fusion proteins. This second-generation system was applied to activate various signaling proteins, including Tiam1, cRaf, PI3K, and Sos, upon synthetic lipidation-induced PM anchoring/recruitment, offering a new and useful research tool in chemical biology and synthetic biology.


Assuntos
Membrana Celular/metabolismo , Proteínas Ligadas a Lipídeos/síntese química , Lipídeos de Membrana/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão , Membrana Celular/química , Escherichia coli , Proteínas Ligadas a Lipídeos/química , Proteínas Ligadas a Lipídeos/metabolismo , Lipídeos de Membrana/química , Proteínas Recombinantes de Fusão/síntese química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem/métodos , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo
11.
Biochemistry ; 59(2): 205-211, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31578861

RESUMO

The self-localizing ligand-induced protein translocation (SLIPT) system is an emerging platform that controls protein localization in living cells using synthetic self-localizing ligands (SLs). Here, we report a chemogenetic SLIPT system for inducing protein translocation from the cytoplasm to the surface of the endoplasmic reticulum (ER) and Golgi membranes, referred to as endomembranes. By screening a series of lipid-trimethoprim (TMP) conjugates, we found oleic acid-tethered TMP (oleTMP) to be the optimal SL that efficiently relocated and anchored Escherichia coli dihydrofolate reductase (eDHFR)-fusion proteins to endomembranes. We showed that oleTMP mediated protein anchoring to endomembranes within minutes and could be reversed by the addition of free TMP. We also applied the endomembrane SLIPT system to artificially activate endomembrane Ras and inhibit the active nuclear transport of extracellular signal-regulated kinase (ERK), demonstrating its applicability for manipulating biological processes in living cells. We envision that the present oleTMP-based SLIPT system, which affords rapid and reversible control of protein anchoring to endomembranes, will offer a new unique tool for the study and control of spatiotemporally regulated cell signaling processes.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Trimetoprima/farmacologia , Proteínas ras/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Ligantes , Ácidos Oleicos/farmacologia , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Trimetoprima/análogos & derivados
12.
J Am Chem Soc ; 142(43): 18522-18531, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33047956

RESUMO

Expanding the repertoire of electrophiles with unique reactivity features would facilitate the development of covalent inhibitors with desirable reactivity profiles. We herein introduce bicyclo[1.1.0]butane (BCB) carboxylic amide as a new class of thiol-reactive electrophiles for selective and irreversible inhibition of targeted proteins. We first streamlined the synthetic routes to generate a variety of BCB amides. The strain-driven nucleophilic addition to BCB amides proceeded chemoselectively with cysteine thiols under neutral aqueous conditions, the rate of which was significantly slower than that of acrylamide. This reactivity profile of BCB amide was successfully exploited to develop covalent ligands targeting Bruton's tyrosine kinase (BTK). By tuning BCB amide reactivity and optimizing its disposition on the ligand, we obtained a selective covalent inhibitor of BTK. The in-gel activity-based protein profiling and mass spectrometry-based chemical proteomics revealed that the selected BCB amide had a higher target selectivity for BTK in human cells than did a Michael acceptor probe. Further chemical proteomic study revealed that BTK probes bearing different classes of electrophiles exhibited distinct off-target profiles. This result suggests that incorporation of BCB amide as a cysteine-directed electrophile could expand the capability to develop covalent inhibitors with the desired proteome reactivity profile.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Amidas/química , Compostos Bicíclicos com Pontes/química , Cisteína/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Linhagem Celular , Ciclobutanos/química , Humanos , Ligantes , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo
13.
Plant Physiol ; 181(2): 499-509, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31366719

RESUMO

Homologous recombination is a key process for maintaining genome integrity and diversity. In eukaryotes, the nucleosome structure of chromatin inhibits the progression of homologous recombination. The DNA repair and recombination protein RAD54 alters the chromatin structure via nucleosome sliding to enable homology searches. For homologous recombination to progress, appropriate recruitment and dissociation of RAD54 is required at the site of homologous recombination; however, little is known about the mechanism regulating RAD54 dynamics in chromatin. Here, we reveal that the histone demethylase LYSINE-SPECIFIC DEMETHYLASE1-LIKE 1 (LDL1) regulates the dissociation of RAD54 at damaged sites during homologous recombination repair in the somatic cells of Arabidopsis (Arabidopsis thaliana). Depletion of LDL1 leads to an overaccumulation of RAD54 at damaged sites with DNA double-strand breaks. Moreover, RAD54 accumulates at damaged sites by recognizing histone H3 Lys 4 di-methylation (H3K4me2); the frequency of the interaction between RAD54 and H3K4me2 increased in the ldl1 mutant with DNA double-strand breaks. We propose that LDL1 removes RAD54 at damaged sites by demethylating H3K4me2 during homologous recombination repair and thereby maintains genome stability in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , DNA Helicases/metabolismo , Histona Desmetilases/metabolismo , Reparo de DNA por Recombinação , Arabidopsis/genética , Histonas/metabolismo
14.
Rapid Commun Mass Spectrom ; 34(9): e8729, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31951673

RESUMO

RATIONALE: A recently developed matrix-free laser desorption/ionization method, DIUTHAME (desorption ionization using through-hole alumina membrane), was examined for the feasibility of mass spectrometry imaging (MSI) applied to frozen tissue sections. The permeation behavior of DIUTHAME is potentially useful for MSI as positional information may not be distorted during the extraction of analytes from a sample. METHODS: The through-hole porous alumina membranes used in the DIUTHAME chips were fabricated by wet anodization, were 5 µm thick, and had the desired values of 200 nm through-hole diameter and 50% open aperture ratio. Mouse brain frozen tissue sections on indium tin oxide (ITO)-coated slides were covered using the DIUTHAME chips and were subjected to MSI experiments in commercial time-of-flight mass spectrometers equipped with solid-state UV lasers after thawing and drying without matrix application. RESULT: Mass spectra and mass images were successfully obtained from the frozen tissue sections using DIUTHAME as the ionization method. The mass spectra contained rich peaks in the phospholipid mass range free from the chemical background owing to there being no matrix-derived peaks in that range. DIUTHAME-MSI delivered high-quality mass images that reflected the anatomy of the brain tissue. CONCLUSIONS: Analytes can be extracted from frozen tissue by capillary action of the through-holes in DIUTHAME and moisture contained in the tissue without distorting positional information of the analytes. The sample preparation for frozen tissue sections in DIUTHAME-MSI is simple, requiring no specialized skills or dedicated apparatus for matrix application. DIUTHAME can facilitate MSI at a low mass, as there is no interference from matrix-derived peaks, and should provide high-quality, reproducible mass images more easily than MALDI-MSI.


Assuntos
Química Encefálica , Secções Congeladas/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Óxido de Alumínio/química , Animais , Secções Congeladas/instrumentação , Membranas Artificiais , Camundongos , Porosidade
15.
Chem Pharm Bull (Tokyo) ; 68(11): 1074-1081, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33132374

RESUMO

Fragment-based approach combined with electrophilic reactive compounds is a powerful strategy to discover novel covalent ligands for protein target. However, the promiscuous reactivity often interferes with identification of the fragments possessing specific binding affinity to the targeted protein. In our study, we report the fragment-based covalent drug discovery using the chemically tuned weak reactivity of chlorofluoroacetamide (CFA). We constructed a small fragment library composed of 30 CFA-appended compounds and applied it to the covalent ligand screening for cysteine protease papain as a model protein target. Using the fluorescence enzymatic assay, we identified CFA-benzothiazole 30 as a papain inhibitor, which was found to irreversibly inactivate papain upon enzyme kinetic analysis. The formation of the covalent papain-30 adduct was confirmed using electrospray ionization mass spectrometry analysis. The activity-based protein profiling (ABPP) experiment using an alkynylated analog of 30 (i.e., 30-yne) revealed that 30-yne covalently labeled papain with high selectivity. These data demonstrate potential utility of the CFA-fragment library for de novo discovery of target selective covalent inhibitors.


Assuntos
Acetamidas/química , Cisteína Proteases/química , Inibidores de Cisteína Proteinase/química , Acetamidas/metabolismo , Cromatografia Líquida de Alta Pressão , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Descoberta de Drogas , Corantes Fluorescentes/química , Cinética , Ligantes , Papaína/antagonistas & inibidores , Papaína/metabolismo , Espectrometria de Massas por Ionização por Electrospray
16.
J Am Chem Soc ; 141(37): 14742-14751, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31436980

RESUMO

E2 conjugating enzymes are the key catalytic actors in the transfer of ubiquitin, SUMO, and other ubiquitin-like modifiers to their substrate proteins. Their high rates of transfer and promiscuous binding complicate studies of their interactions and binding partners. To access specific, covalently linked conjugates of the SUMO E2 conjugating enzyme Ubc9, we prepared synthetic variants bearing site-specific non-native modifications including the following: (1) replacement of Cys93 to 2,3-diaminopropionic acid to form the amide-linked stable E2-SUMO conjugate, which is known to have high affinity for E3 ligases; (2) a photoreactive group (diazirine) to trap E3 ligases upon UV irradiation; and (3) an N-terminal biotin for purification and detection. To construct these Ubc9 variants in a flexible, convergent manner, we combined the three leading methods: native chemical ligation (NCL), α-ketoacid-hydroxylamine (KAHA) ligation, and serine/threonine ligation (STL). Using the synthetic proteins, we demonstrated the selective formation of Ubc9-SUMO conjugates and the trapping of an E3 ligase (RanBP2) to form the stable, covalently linked SUMO1-Ubc9-RanBP2 ternary complex. The powerful combination of ligation methods-which minimizes challenges of functional group manipulations-will enable chemical probes based on E2 conjugating enzymes to trap E3 ligases and facilitate the synthesis of other protein classes.


Assuntos
Sumoilação , Enzimas de Conjugação de Ubiquitina/síntese química , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
17.
Chembiochem ; 20(7): 900-905, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548113

RESUMO

Glutathione S-transferase π (GSTP1-1 ) is overexpressed in many types of cancer and is involved in drug resistance. Therefore, GSTP1-1 is an important target in cancer therapy, and many GST inhibitors have been reported. We had previously developed an irreversible inhibitor, GS-ESF, as an effective GST inhibitor; however, its cellular permeability was too low for it to be used in inhibiting intracellular GST. We have now developed new irreversible inhibitors by introducing sulfonyl fluoride (SF) into chloronitrobenzene (CNB). The mechanism of action was revealed to be that CNBSF first reacts with glutathione (GSH) through an aromatic substitution in the cell, then the sulfonyl group on the GSH conjugate with CNBSF reacts with Tyr108 of GST to form a sulfonyl ester bond. Our new inhibitor irreversible inhibited GSTP1-1 both in vitro and in cellulo with a long duration of action.


Assuntos
Inibidores Enzimáticos/farmacologia , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa/análogos & derivados , Glutationa/farmacologia , Sulfonas/farmacologia , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Glutationa/síntese química , Glutationa S-Transferase pi/química , Humanos , Simulação de Acoplamento Molecular , Sulfonas/síntese química , Tirosina/química
18.
Plant Physiol ; 176(4): 3081-3102, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475897

RESUMO

Water submergence is an environmental factor that limits plant growth and survival. Deepwater rice (Oryza sativa) adapts to submergence by rapidly elongating its internodes and thereby maintaining its leaves above the water surface. We performed a comparative RNA sequencing transcriptome analysis of the shoot base region, including basal nodes, internodes, and shoot apices of seedlings at two developmental stages from two varieties with contrasting deepwater growth responses. A transcriptomic comparison between deepwater rice cv C9285 and nondeepwater rice cv Taichung 65 revealed both similar and differential expression patterns between the two genotypes during submergence. The expression of genes related to gibberellin biosynthesis, trehalose biosynthesis, anaerobic fermentation, cell wall modification, and transcription factors that include ethylene-responsive factors was significantly different between the varieties. Interestingly, in both varieties, the jasmonic acid content at the shoot base decreased during submergence, while exogenous jasmonic acid inhibited submergence-induced internode elongation in cv C9285, suggesting that jasmonic acid plays a role in the submergence response of rice. Furthermore, a targeted de novo transcript assembly revealed transcripts that were specific to cv C9285, including submergence-induced biotic stress-related genes. Our multifaceted transcriptome approach using the rice shoot base region illustrates a differential response to submergence between deepwater and nondeepwater rice. Jasmonic acid metabolism appears to participate in the submergence-mediated internode elongation response of deepwater rice.


Assuntos
Inundações , Perfilação da Expressão Gênica/métodos , Oryza/genética , Folhas de Planta/genética , Brotos de Planta/genética , Água/metabolismo , Adaptação Fisiológica/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/biossíntese , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Plant Physiol ; 176(4): 2943-2962, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475899

RESUMO

Phosphate starvation-mediated induction of the HAD-type phosphatases PPsPase1 (AT1G73010) and PECP1 (AT1G17710) has been reported in Arabidopsis (Arabidopsis thaliana). However, little is known about their in vivo function or impact on plant responses to nutrient deficiency. The preferences of PPsPase1 and PECP1 for different substrates have been studied in vitro but require confirmation in planta. Here, we examined the in vivo function of both enzymes using a reverse genetics approach. We demonstrated that PPsPase1 and PECP1 affect plant phosphocholine and phosphoethanolamine content, but not the pyrophosphate-related phenotypes. These observations suggest that the enzymes play a similar role in planta related to the recycling of polar heads from membrane lipids that is triggered during phosphate starvation. Altering the expression of the genes encoding these enzymes had no effect on lipid composition, possibly due to compensation by other lipid recycling pathways triggered during phosphate starvation. Furthermore, our results indicated that PPsPase1 and PECP1 do not influence phosphate homeostasis, since the inactivation of these genes had no effect on phosphate content or on the induction of molecular markers related to phosphate starvation. A combination of transcriptomics and imaging analyses revealed that PPsPase1 and PECP1 display a highly dynamic expression pattern that closely mirrors the phosphate status. This temporal dynamism, combined with the wide range of induction levels, broad expression, and lack of a direct effect on Pi content and regulation, makes PPsPase1 and PECP1 useful molecular markers of the phosphate starvation response.


Assuntos
Proteínas de Arabidopsis/metabolismo , Etanolaminas/metabolismo , Pirofosfatase Inorgânica/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilcolina/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Homeostase , Pirofosfatase Inorgânica/genética , Lipídeos de Membrana/metabolismo , Mutação , Monoéster Fosfórico Hidrolases/genética
20.
J Biol Chem ; 292(41): 17057-17072, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28864773

RESUMO

Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that MAPK1-interacting and spindle-stabilizing (MISS)-like (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of secreted alkaline phosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Colágeno Tipo I/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Colágeno Tipo I/genética , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Precursores de Proteínas/genética , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA