Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Sensors (Basel) ; 24(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894390

RESUMO

Chemical warfare agents pose a serious threat due to their extreme toxicity, necessitating swift the identification of chemical gases and individual responses to the identified threats. Fourier transform infrared (FTIR) spectroscopy offers a method for remote material analysis, particularly in detecting colorless and odorless chemical agents. In this paper, we propose a deep neural network utilizing a semi-supervised autoencoder (SSAE) for the classification of chemical gases based on FTIR spectra. In contrast to traditional methods, the SSAE concurrently trains an autoencoder and a classifier attached to a latent vector of the autoencoder, enhancing feature extraction for classification. The SSAE was evaluated on laboratory-collected FTIR spectra, demonstrating a superior classification performance compared to existing methods. The efficacy of the SSAE lies in its ability to generate denser cluster distributions in latent vectors, thereby enhancing gas classification. This study established a consistent experimental environment for hyperparameter optimization, offering valuable insights into the influence of latent vectors on classification performance.

2.
Anal Chem ; 93(49): 16528-16534, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34865465

RESUMO

CRISPR-based detection of target DNA or RNA exploits a dual function, including target sequence-specific recognition followed by trans-cleavage activity of a collateral ssDNA linker between a fluorophore (F) and a quencher (Q), which amplifies a fluorescent signal upon cleavage. In this work, we have extended such dual functionality in a modified immunoassay format to detect a target protein, CXCL9, which is markedly elevated in the urine of kidney transplant recipients undergoing acute rejection episodes. To establish the "immuno-CRISPR" assay, we used anti-CXCL9 antibody-DNA barcode conjugates to target CXCL9 and amplify fluorescent signals via Cas12a-based trans-cleavage activity of FQ reporter substrates, respectively, and in the absence of an isothermal amplification step. To enhance detection sensitivity, the DNA barcode system was engineered by introducing multiple Cas12a recognition sites. Use of biotinylated DNA barcodes enabled self-assembly onto streptavidin (SA) to generate SA-DNA barcode complexes to increase the number and density of Cas12a recognition sites attached to biotinylated anti-CXCL9 antibody. As a result, we improved the rate of CXCL9 detection approximately 8-fold when compared to the use of a monomeric DNA barcode. The limit of detection (LOD) for CXCL9 using the immuno-CRISPR assay was 14 pg/mL, which represented an ∼7-fold improvement when compared to traditional HRP-based ELISA. Selectivity was shown with a lack of crossover reactivity with the related chemokine CXCL1. Finally, we successfully evaluated the presence of CXCL9 in urine samples from 11 kidney transplant recipients using the immuno-CRISPR assay, resulting in 100% accuracy to clinical CXCL9 determination and paving the way for use as a point-of-care noninvasive biomarker for the detection of kidney transplant rejection.


Assuntos
Quimiocina CXCL9/urina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples , Rejeição de Enxerto/diagnóstico , Imunoensaio , Humanos , Transplante de Rim , Limite de Detecção , RNA , Estreptavidina , Transplantados
3.
Biomacromolecules ; 20(10): 4035-4043, 2019 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-31524374

RESUMO

Lytic enzymes have been considered as potential alternatives to antibiotics. These enzymes, particularly those that target Gram-positive bacteria, consist of modular cell wall-binding and catalytic domains, which can be shuffled with those of other lytic enzymes to produce unnatural chimeric enzymes. In this work, we report the in vitro shuffling of two different modular domains using a protein self-assembly methodology. Catalytic domains (CD) and cell wall-binding domains (BD) from the bacteriocin lysostaphin (Lst) and a putative autolysin from Staphylococcus aureus (SA1), respectively, were genetically site-specifically biotinylated and assembled with streptavidin to generate 23 permuted chimeras. The specific assembly of a CD (3 equiv) and a BD (1 equiv) from Lst and SA1, respectively [CDL-BDS (3:1)], on a streptavidin scaffold yielded high lytic activity against S. aureus (at least 5.6 log reduction), which was higher than that obtained with either native Lst or SA1 alone. Moreover, at 37 °C, the initial rate of cell lysis was over 3-fold higher than that with free Lst, thereby revealing the unique catalytic properties of the chimeric proteins. In vitro self-assembly of functional domains from modular lytic enzymes on a protein scaffold likely expands the repertoire of bactericidal enzymes with improved activities.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Quimera , Lisostafina/química , Lisostafina/farmacocinética , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/farmacologia
4.
Biomacromolecules ; 20(7): 2477-2485, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31094205

RESUMO

Highly effective and minimally toxic antimicrobial agents have been prepared by immobilizing glucose oxidase (GOx) onto biocompatible chitosan nanoparticles (CS-NPs). CS-NPs were prepared via ionotropic gelation and used for the immobilization of GOx via approaches of covalent attachment (CA), enzyme coating (EC), enzyme precipitate coating (EPC), and magnetic nanoparticle-incorporated EPC (Mag-EPC). EPC represents an approach consisting of enzyme covalent attachment, precipitation, and cross-linking, with CA and EC being control samples while Mag-EPC was prepared by mixing magnetic nanoparticles (Mag) with enzymes during the preparation of EPC. The GOx activities of CA, EC, EPC, and Mag-EPC were 8.57, 17.7, 219, and 247 units/mg CS-NPs, respectively, representing 26 and 12 times higher activity of EPC than those of CA and EC, respectively. EPC improved the activity and stability of GOx and led to good dispersion of CS-NPs, while Mag-EPC enabled facile magnetic separation. To demonstrate the expandability of the EPC approach to other enzymes, bovine carbonic anhydrase was also employed to prepare EPC and Mag-EPC samples for their characterizations. In the presence of glucose, EPC of GOx generated H2O2 in situ, which effectively inhibited the proliferation of Staphylococcus aureus in both suspended cultures and biofilms, thereby demonstrating the potential of EPC-GOx as environmentally friendly and highly effective antimicrobial materials.


Assuntos
Anti-Infecciosos , Quitosana , Enzimas Imobilizadas , Glucose Oxidase , Nanopartículas de Magnetita/química , Staphylococcus aureus/crescimento & desenvolvimento , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Quitosana/química , Quitosana/farmacologia , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia , Glucose Oxidase/química , Glucose Oxidase/farmacologia
5.
Biotechnol Bioeng ; 114(8): 1648-1657, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28369698

RESUMO

Targeting infectious bacterial pathogens is important for reducing the evolution of antibiotic-resistant bacteria and preserving the endogenous human microbiome. Cell lytic enzymes including bacteriophage endolysins, bacterial autolysins, and other bacteriolysins are useful antibiotic alternatives due to their exceptional target selectivity, which may be used to lysins rapidly kill target bacteria and their high specificity permit the normal commensal microflora to be left undisturbed. Genetic information of numerous lysins is currently available, but the identification of their antimicrobial function and specificity has been limited because most lysins are often poorly expressed and exhibit low solubilities. Here, we report the development of bacterial cell chip for rapidly accessing the function of diverse genes that are suggestive of encoding lysins. This approach can be used to evaluate rapidly the species-specific antimicrobial activity of diverse lysins synthesized from in vitro transcription and translation (TNT) of plasmid DNA. In addition, new potent lysins can be assessed that are not expressed in hosts and display low solubility. As a result of evaluating the species-specific antimicrobial function of 11 (un)known lysins with an in vitro TNT-coupled bacterial cell chip, a potent recombinant lysin against Staphylococcus strains, SA1, was identified. The SA1 was highly potent against not only S. aureus, but also both lysostaphin-resistant S. simulans and S. epidermidis cells. To this end, the SA1 may be applicable to treat both methicillin-resistant S. aureus (MRSA) and lysostaphin-resistant MRSA mutants. Biotechnol. Bioeng. 2017;114: 1648-1657. © 2017 Wiley Periodicals, Inc.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Proteínas de Bactérias/administração & dosagem , Bioensaio/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Enzimas/administração & dosagem , Perfilação da Expressão Gênica/instrumentação , Sobrevivência Celular/efeitos dos fármacos , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas , Análise Serial de Tecidos/instrumentação
6.
Electrophoresis ; 36(19): 2425-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26084971

RESUMO

A simple and rapid detection of cerebrospinal fluid (CSF) leakage would benefit spine surgeons making critical postoperative decisions on patient care. We have assessed novel approaches to selectively determine CSF ß2-transferrin (ß2TF), an asialo-transferrin (aTF) biomarker, without interference from serum sialo-transferrin (sTF) in test samples. First, we performed mild periodate oxidation to selectively generate aldehyde groups in sTF for capture with magnetic hydrazide microparticles, and selective removal with a magnetic separator. Using this protocol sTF was selectively removed from mixtures of CSF and serum containing CSF aTF (ß2TF) and serum sTF, respectively. Second, a two-step enzymatic method was developed with neuraminidase and galactose oxidase for generating aldehyde groups in sTF present in CSF and serum mixtures for magnetic hydrazide microparticle capture. After selectively removing sTF from mixtures of CSF and serum, ELISA could detect significant TF signal only in CSF, while the TF signal in serum was negligible. The new approach for selective removal of only sTF in test samples will be promising for the required intervention by a spine surgeon.


Assuntos
Assialoglicoproteínas , Vazamento de Líquido Cefalorraquidiano/diagnóstico , Sialoglicoproteínas , Transferrina/análogos & derivados , Assialoglicoproteínas/sangue , Assialoglicoproteínas/líquido cefalorraquidiano , Assialoglicoproteínas/química , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Humanos , Sialoglicoproteínas/sangue , Sialoglicoproteínas/líquido cefalorraquidiano , Sialoglicoproteínas/química , Transferrina/líquido cefalorraquidiano , Transferrina/química
7.
ACS Sens ; 9(1): 92-100, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38141036

RESUMO

Rapid, accurate, and noninvasive detection of biomarkers in saliva, urine, or nasal fluid is essential for the identification, early diagnosis, and monitoring of cancer, organ failure, transplant rejection, vascular diseases, autoimmune disorders, and infectious diseases. We report the development of an Immuno-CRISPR-based lateral flow assay (LFA) using antibody-DNA barcode complexes with magnetic enrichment of the target urinary biomarkers CXCL9 and CXCL10 for naked eye detection (ImmunoMag-CRISPR LFA). An intermediate approach involving a magnetic bead-based Immuno-CRISPR assay (ImmunoMag-CRISPR) resulted in a limit of detection (LOD) of 0.6 pg/mL for CXCL9. This value surpasses the detection limits achieved by previously reported assays. The highly sensitive detection method was then re-engineered into an LFA format with an LOD of 18 pg/mL for CXCL9, thereby enabling noninvasive early detection of acute kidney transplant rejection. The ImmunoMag-CRISPR LFA was tested on 42 clinical urine samples from kidney transplant recipients, and the assay could determine 11 positive and 31 negative urinary samples through a simple visual comparison of the test line and the control line of the LFA strip. The LFA system was then expanded to quantify the CXCL9 and CXCL10 levels in clinical urine samples from images. This approach has the potential to be extended to a wide range of point-of-care tests for highly sensitive biomarker detection.


Assuntos
Testes Imediatos , Biomarcadores/urina
8.
N Biotechnol ; 82: 54-64, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-38750815

RESUMO

Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.


Assuntos
Bacillus anthracis , Parede Celular , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/isolamento & purificação , Bacillus anthracis/metabolismo , Parede Celular/metabolismo , Parede Celular/química , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/química , Multimerização Proteica , Domínios Proteicos , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais , Peptidoglicano/metabolismo , Peptidoglicano/química
9.
Biochemistry ; 52(50): 9009-19, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24289246

RESUMO

Fibroblast growth factor (FGF) signals cell growth through its interaction with a fibroblast growth factor receptor (FGFR) and a glycosaminoglycn (GAG) coreceptor. Here, we examine the signaling of five different FGFs (1, 2, 6, 8, and 8b) through FGFR3c. A small library of GAG and GAG-derivative coreceptors are screened to understand better the structure-activity relationship of these coreceptors on signaling. Initially, data were collected in a microtiter plate well-based cell proliferation assay. In an effort to reduce reagent requirements and improve assay throughput, a cell-based microarray platform was developed. In this cell-based microarray, FGFR3c-expressing cells were printed in alginate hydrogel droplets of ∼30 nL and incubated with FGF and GAG. Heparin was the most effective GAG coreceptor for all FGFs studied. Other GAGs, such as 2-O-desulfated heparin and chondroitin sulfate B, were also effective coreceptors. Signaling by FGF 8 and FGF 8b showed the widest tolerance for coreceptor structure. Finally, this on-chip cell-based microarray provides comparable data to a microtiter plate well-based assay, demonstrating that the coreceptor assay can be converted into a high-throughput assay.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Glicosaminoglicanos/metabolismo , Análise em Microsséries , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Animais , Configuração de Carboidratos , Proliferação de Células , Células Cultivadas , Glicosaminoglicanos/química , Heparina/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/metabolismo
10.
Environ Sci Technol ; 47(22): 13001-10, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24156748

RESUMO

There are few available in situ remediation options for Hg contaminated sediments, short of capping. Here we present the first tests of activated carbon and other sorbents as potential in situ amendments for remediation of mercury and methylmercury (MeHg), using a study design that combined 2 L sediment/water microcosms with 14 day bioaccumulation assays. Our key end points were pore water concentrations, and bioaccumulation of total Hg and MeHg by a deposit-feeding oligochaete Lumbriculus variegatus. Four amendments were tested: an activated carbon (AC); CETCO Organoclay MRM (MRM); Thiol-SAMMS (TS), a thiol-functionalized mesoporous silica; and AMBERSEP GT74, an ion-exchange resin. Amendments were tested in four separate microcosm assays using Hg-contaminated sediments from two freshwater and two estuarine sites. AC and TS amendments, added at 2-7% of the dry weight of sediments significantly reduced both MeHg concentrations in pore waters, relative to unamended controls (by 45-95%) and bioaccumulation of MeHg by Lumbriculus (by between 30 and 90%). Both amendments had only small impacts on microcosm surface water, sediment and pore water chemistry, with the exception of significant reductions in pore water dissolved organic matter. The effectiveness of amendments in reducing bioaccumulation was well-correlated with their effectiveness in increasing sediment:water partitioning, especially of MeHg. Sediments with low native sediment:water MeHg partition coefficients were most effectively treated. Thus, in situ sediment sorbent amendments may be able to reduce the risk of biotic Hg and MeHg uptake in contaminated sediments, and subsequent contamination of food webs.


Assuntos
Carvão Vegetal/química , Sedimentos Geológicos/química , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes do Solo/análise , Animais , Biodegradação Ambiental , Disponibilidade Biológica , Estuários , Água Doce/química , Oligoquetos/metabolismo , Poluentes Químicos da Água/análise
11.
Polymers (Basel) ; 15(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37376368

RESUMO

Infectious diseases caused by pathogens are a health burden, but traditional pathogen identification methods are complex and time-consuming. In this work, we have developed well-defined, multifunctional copolymers with rhodamine B dye synthesized by atom transfer radical polymerization (ATRP) using fully oxygen-tolerant photoredox/copper dual catalysis. ATRP enabled the efficient synthesis of copolymers with multiple fluorescent dyes from a biotin-functionalized initiator. Biotinylated dye copolymers were conjugated to antibody (Ab) or cell-wall binding domain (CBD), resulting in a highly fluorescent polymeric dye-binder complex. We showed that the unique combination of multifunctional polymeric dyes and strain-specific Ab or CBD exhibited both enhanced fluorescence and target selectivity for bioimaging of Staphylococcus aureus by flow cytometry and confocal microscopy. The ATRP-derived polymeric dyes have the potential as biosensors for the detection of target DNA, protein, or bacteria, as well as bioimaging.

12.
Commun Biol ; 6(1): 387, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031303

RESUMO

SARS-CoV-2 receptor binding domains (RBDs) interact with both the ACE2 receptor and heparan sulfate on the surface of host cells to enhance SARS-CoV-2 infection. We show that suramin, a polysulfated synthetic drug, binds to the ACE2 receptor and heparan sulfate binding sites on the RBDs of wild-type, Delta, and Omicron variants. Specifically, heparan sulfate and suramin had enhanced preferential binding for Omicron RBD, and suramin is most potent against the live SARS-CoV-2 Omicron variant (B.1.1.529) when compared to wild type and Delta (B.1.617.2) variants in vitro. These results suggest that inhibition of live virus infection occurs through dual SARS-CoV-2 targets of S-protein binding and previously reported RNA-dependent RNA polymerase inhibition and offers the possibility for this and other polysulfated molecules to be used as potential therapeutic and prophylactic options against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Suramina/farmacologia , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus , Heparitina Sulfato
13.
Environ Sci Technol ; 46(9): 5032-9, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22480244

RESUMO

Typical sand caps used for sediment remediation have little sorption capacity to retard the migration of hydrophobic contaminants such as PAHs that can be mobilized by significant groundwater flow. Laboratory column experiments were performed using contaminated sediments and capping materials from a creosote contaminated USEPA Superfund site. Azoic laboratory column experiments demonstrated rapid breakthrough of lower molecular weight PAHs when groundwater seepage was simulated through a column packed with coarse sand capping material. After eight pore volumes of flow, most PAHs measured showed at least 50% of initial source pore water concentrations at the surface of 65 cm capping material. PAH concentration in the cap solids was low and comparable to background levels typically seen in urban depositional sediment, but the pore water concentrations were high. Column experiments with a peat amendment delayed PAH breakthrough. The most dramatic result was observed for caps amended with activated carbon at a dose of 2% by dry weight. PAH concentrations in the pore water of the activated carbon amended caps were 3-4 orders of magnitude lower (0.04 ± 0.02 µg/L for pyrene) than concentrations in the pore water of the source sediments (26.2 ± 5.6 µg/L for pyrene) even after several hundred pore volumes of flow. Enhancing the sorption capacity of caps with activated carbon amendment even at a lower dose of 0.2% demonstrated a significant impact on contaminant retardation suggesting consideration of active capping for field sites prone to groundwater upwelling or where thin caps are desired to minimize change in bathymetry and impacts to aquatic habitats.


Assuntos
Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/química , Poluição Química da Água/prevenção & controle , Carvão Vegetal/química , Modelos Químicos , Solo/química
14.
Front Mol Biosci ; 9: 912887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046608

RESUMO

Heparan sulfate (HS) acts as a co-receptor of angiotensin-converting enzyme 2 (ACE2) by interacting with severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein (SGP) facilitating host cell entry of SARS-CoV-2 virus. Heparin, a highly sulfated version of heparan sulfate (HS), interacts with a variety of proteins playing key roles in many physiological and pathological processes. In this study, SARS-CoV-2 SGP receptor binding domain (RBD) wild type (WT), Delta and Omicron variants were expressed in Expi293F cells and used in the kinetic and structural analysis on their interactions with heparin. Surface plasmon resonance (SPR) analysis showed the binding kinetics of SGP RBD from WT and Delta variants were very similar while Omicron variant SGP showed a much higher association rate. The SGP from Delta and Omicron showed higher affinity (K D ) to heparin than the WT SGP. Competition SPR studies using heparin oligosaccharides indicated that binding of SGP RBDs to heparin requires chain length greater than 18. Chemically modified heparin derivatives all showed reduced interactions in competition assays suggesting that all the sulfo groups in the heparin polysaccharide were critical for binding SGP RBDs with heparin. These interactions with heparin are pH sensitive. Acidic pH (pH 6.5, 5.5, 4.5) greatly increased the binding of WT and Delta SGP RBDs to heparin, while acidic pH slightly reduced the binding of Omicron SGP RBD to heparin compared to binding at pH 7.3. In contrast, basic pH (pH 8.5) greatly reduced the binding of Omicron SGP RBDs to heparin, with much less effects on WT or Delta. The pH dependence indicates different charged residues were present at the Omicron SGP-heparin interface. Detailed kinetic and structural analysis of the interactions of SARS-CoV-2 SGP RBDs with heparin provides important information for designing anti-SARS-CoV-2 molecules.

15.
Commun Biol ; 4(1): 893, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290356

RESUMO

Immunotherapy has emerged as a promising approach to treating several forms of cancer. Use of immune cells, such as natural killer (NK) cells, along with small molecule drugs and antibodies through antibody dependent cell-mediated cytotoxicity (ADCC) has been investigated as a potential combination therapy for some difficult to treat solid tumors. Nevertheless, there remains a need to develop tools that support co-culture of target cancer cells and effector immune cells in a contextually relevant three-dimensional (3D) environment to provide a rapid means to screen for and optimize ADCC-drug combinations. To that end, here we have developed a high throughput 330 micropillar-microwell sandwich platform that enables 3D co-culture of NK92-CD16 cells with pancreatic (MiaPaCa-2) and breast cancer cell lines (MCF-7 and MDA-MB-231). The platform successfully mimicked hypoxic conditions found in a tumor microenvironment and was used to demonstrate NK-cell mediated cell cytotoxicity in combination with two monoclonal antibodies; Trastuzumab and Atezolizumab. The platform was also used to show dose response behavior of target cancer cells with reduced EC50 values for paclitaxel (an anti-cancer chemotherapeutic) when treated with both NK cells and antibody. Such a platform may be used to develop more personalized cancer therapies using patient-derived cancer cells.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Esferoides Celulares/fisiologia , Análise Serial de Tecidos/instrumentação , Trastuzumab/farmacologia , Microambiente Tumoral , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais/imunologia , Células MCF-7 , Análise em Microsséries
16.
Biotechnol Bioeng ; 106(1): 106-18, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20069558

RESUMO

We have developed a novel three-dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell culture array on a functionalized glass slide for spatially addressable high-throughput screening. A microarray spotter was used to deposit cells onto a modified glass surface to yield an array consisting of cells encapsulated in alginate gel spots with volumes as low as 60 nL. A method based on an immunofluorescence technique scaled down to function on a cellular microarray was also used to quantify specific cell marker protein levels in situ. Our results revealed that this platform is suitable for studying the expansion of mouse embryonic stem (ES) cells as they retain their pluripotent and undifferentiated state. We also examined neural commitment of mouse ES cells on the microarray and observed the generation of neuroectodermal precursor cells characterized by expression of the neural marker Sox-1, whose levels were also measured in situ using a GFP reporter system. In addition, the high-throughput capacity of the platform was tested using a dual-slide system that allowed rapid screening of the effects of tretinoin and fibroblast growth factor-4 (FGF-4) on the pluripotency of mouse ES cells. This high-throughput platform is a powerful new tool for investigating cellular mechanisms involved in stem cell expansion and differentiation and provides the basis for rapid identification of signals and conditions that can be used to direct cellular responses.


Assuntos
Análise em Microsséries/métodos , Alginatos , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Proliferação de Células , Meios de Cultura/química , Fator 4 de Crescimento de Fibroblastos/fisiologia , Géis , Vidro , Camundongos , Fatores de Transcrição SOXB1/biossíntese , Células-Tronco
17.
Nat Chem ; 12(1): 26-35, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767992

RESUMO

DNA, when folded into nanostructures with a specific shape, is capable of spacing and arranging binding sites into a complex geometric pattern with nanometre precision. Here we demonstrate a designer DNA nanostructure that can act as a template to display multiple binding motifs with precise spatial pattern-recognition properties, and that this approach can confer exceptional sensing and potent viral inhibitory capabilities. A star-shaped DNA architecture, carrying five molecular beacon-like motifs, was constructed to display ten dengue envelope protein domain III (ED3)-targeting aptamers into a two-dimensional pattern precisely matching the spatial arrangement of ED3 clusters on the dengue (DENV) viral surface. The resulting multivalent interactions provide high DENV-binding avidity. We show that this structure is a potent viral inhibitor and that it can act as a sensor by including a fluorescent output to report binding. Our molecular-platform design strategy could be adapted to detect and combat other disease-causing pathogens by generating the requisite ligand patterns on customized DNA nanoarchitectures.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , DNA/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/isolamento & purificação , Nanoestruturas/química , Animais , Aptâmeros de Nucleotídeos/química , Benzimidazóis/química , Chlorocebus aethiops , DNA/química , Vírus da Dengue/química , Fluoresceínas/química , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Domínios Proteicos , Células Vero , Proteínas do Envelope Viral/química
18.
Theranostics ; 9(14): 4182-4191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281540

RESUMO

Cerebrospinal fluid (CSF) leakage can lead to brain and spine pathologies and there is an urgent need for a rapid diagnostic method for determining CSF leakage. Beta-2 transferrin (ß2TF), asialotransferrin, is a specific CSF glycoprotein biomarker used to determine CSF leakage when distinguished from serum sialotransferrin (sTF). Methods: We detected ß2TF using an immunochromatographic assay (ICA), which can be potentially developed as a point-of-care (POC) testing platform. Sialic acid-specific lectin selectively captures sTF in multiple deletion lines within an ICA test strip, enabling the detection of ß2TF. A sample pre-treatment process efficiently captures excess sTF increasing sensitivity for CSF leakage detection. Results: An optimal cut-off value for determining the presence of CSF in test samples was obtained from receiver operating characteristic (ROC) analysis of the ratio of the test signal intensity and the deletion lines. On 47 clinical samples, ICA test strips discriminated CSF positive from negative samples with statistically significant (positive versus negative t-test; P =0.00027). Additional artificial positive samples, prepared by mixing CSF positive and negative clinical samples, were used as a further challenge. These positive samples were clearly discriminated from the negative samples (mixture versus negative t-test; P =0.00103) and CSF leakage was determined with 97.1% specificity and 96.2% sensitivity. Conclusions: ICA represents a promising approach for POC diagnosis of CSF leakage. While requiring 70 min assay time inconvenient for POC testing, our method was significantly shorter than conventional electrophoresis-based detection methods for ß2TF.


Assuntos
Vazamento de Líquido Cefalorraquidiano/diagnóstico , Imunoensaio/métodos , Ácido N-Acetilneuramínico/análise , Ouro/química , Humanos , Nanopartículas Metálicas/química , Testes Imediatos , Transferrina/análise
19.
Anal Chem ; 80(17): 6633-9, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18656951

RESUMO

We have developed an immunofluorescence-based assay for high-throughput analysis of target proteins on a three-dimensional cellular microarray platform. This process integrates the use of three-dimensional cellular microarrays, which should better mimic the cellular microenvironment, with sensitive immunofluorescence detection and provides quantitative information on cell function. To demonstrate this assay platform, we examined the accumulation of the alpha subunit of the hypoxia-inducible factor (HIF-1alpha) after chemical stimulation of human pancreatic tumor cells encapsulated in 3D alginate spots in volumes as low as 60 nL. We also tested the effect of the known dysregulator of HIF-1alpha, 2-methoxyestradiol (2ME2), on the levels of HIF-1alpha using a dual microarray stamping technique. This chip-based in situ Western immunoassay protocol was able to provide quantitative information on cell function, namely, the cellular response to hypoxia mimicking conditions and the reduction of HIF-1alpha levels after cell treatment with 2ME2. This system is the first to enable high-content screening of cellular protein levels on a 3D human cell microarray platform.


Assuntos
Células/metabolismo , Imunofluorescência/métodos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Análise Serial de Proteínas/métodos , Western Blotting , Linhagem Celular Tumoral , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/agonistas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia
20.
Anal Chim Acta ; 1030: 156-165, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30032765

RESUMO

Detecting bacterial cells at low levels is critical in public health, the food industry and first response. Current processes typically involve laborious cell lysis and genomic DNA extraction to achieve 100-1000 CFU mL-1 levels for detecting gram-positive bacteria. As an alternative to DNA-based methods, cell wall binding domains (CBDs) derived from lysins having a modular structure with an N-terminal catalytic domain and a C-terminal CBD, can be used to detect bacterial pathogens as a result of their exceptionally specific binding to target bacteria with great avidity. We have developed a highly sensitive method for multiplex detection of whole bacterial cells using self-assembled CBD complexes. Self-assembled CBD-SA-reporter complexes were generated using streptavidin (SA), biotin-CBDs, and biotinylated reporters, such as glucose oxidase (GOx) and specific DNA sequences. The simultaneous detection of three test bacteria, Staphylococcus aureus, Bacillus anthracis-Sterne, and Listeria innocua cells in PBS could be accomplished with a 96-well plate-based sandwich method using CBD-SA-GOx complex-coupled spectrophotometric assay to achieve a detection limit of >100 CFU mL-1. To achieve greater detection sensitivity, we used CBD-SA-DNA complexes and qPCR of specific DNA barcodes selectively bound to the surface of target bacterial cells, which resulted in a detection sensitivity as low as 1-10 CFU mL-1 without cross-reactivity. This sensitive multiplex detection of bacterial pathogens using both CBD-SA-GOx and CBD-SA-DNA complexes has the potential to be quickly combined with point-of-care compatible diagnostics for the rapid detection of pathogens in test samples.


Assuntos
Bacillus anthracis/isolamento & purificação , Listeria/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Bacillus anthracis/citologia , Sítios de Ligação , Parede Celular/química , Parede Celular/metabolismo , DNA Bacteriano/química , Glucose Oxidase/metabolismo , Listeria/citologia , Espectrofotometria , Staphylococcus aureus/citologia , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA