Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(10): 4557-4563, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154863

RESUMO

Topological textures of ferroelectric polarizations have promise as alternative devices for future information technology. A polarization rotation inevitably deviates from the stable orientation in axial ferroelectrics, but local energy losses compromise the global symmetry, resulting in a distorted shape of the topological vortex or inhibiting the vortex. Easy planar isotropy helps to promote rotating structures and, accordingly, to facilitate access to nontrivial textures. Here, we investigate the domain structure of an epitaxial thin film of bismuth tungsten oxide (Bi2WO6) grown on a (001) SrTiO3 substrate. By using angle-resolved piezoresponse force microscopy and scanning transmission electron microscopy, we find the existence of a hidden phase with ⟨100⟩-oriented ferroelectric polarizations in the middle of the four variant ⟨110⟩-oriented polarization domains, which assists in the formation of flux closure domains. The results suggest that this material is one step closer to becoming an isotropic two-dimensional polar material.

2.
Int J Mol Sci ; 23(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35743016

RESUMO

An obstacle to effective uniform treatment of glioblastoma, especially at recurrence, is genetic and cellular intertumoral heterogeneity. Hence, personalized strategies are necessary, as are means to stratify potential targeted therapies in a clinically relevant timeframe. Functional profiling of drug candidates against patient-derived glioblastoma organoids (PD-GBO) holds promise as an empirical method to preclinically discover potentially effective treatments of individual tumors. Here, we describe our establishment of a PD-GBO-based functional profiling platform and the results of its application to four patient tumors. We show that our PD-GBO model system preserves key features of individual patient glioblastomas in vivo. As proof of concept, we tested a panel of 41 FDA-approved drugs and were able to identify potential treatment options for three out of four patients; the turnaround from tumor resection to discovery of treatment option was 13, 14, and 15 days, respectively. These results demonstrate that this approach is a complement and, potentially, an alternative to current molecular profiling efforts in the pursuit of effective personalized treatment discovery in a clinically relevant time period. Furthermore, these results warrant the use of PD-GBO platforms for preclinical identification of new drugs against defined morphological glioblastoma features.


Assuntos
Glioblastoma , Glioblastoma/patologia , Humanos , Modelos Biológicos , Recidiva Local de Neoplasia/tratamento farmacológico , Organoides/patologia
3.
Acta Neuropathol ; 140(6): 919-949, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009951

RESUMO

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Xenoenxertos/imunologia , Organoides/patologia , Temozolomida/uso terapêutico , Animais , Neoplasias Encefálicas/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/genética , Xenoenxertos/efeitos dos fármacos , Humanos , Camundongos , Recidiva Local de Neoplasia/genética , Organoides/imunologia , Medicina de Precisão/métodos , Ratos
4.
J Clin Microbiol ; 57(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30728190

RESUMO

Candida auris is an emerging worldwide fungal pathogen. Over the past 20 years, 61 patient isolates of C. auris (4 blood and 57 ear) have been obtained from 13 hospitals in Korea. Here, we reanalyzed those molecularly identified isolates using two matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems, including Biotyper and Vitek MS, followed by antifungal susceptibility testing, sequencing of the ERG11 gene, and genotyping. With a research-use-only (RUO) library, 83.6% and 93.4% of the isolates were correctly identified by Biotyper and Vitek MS, respectively. Using an in vitro diagnostic (IVD) library of Vitek MS, 96.7% of the isolates were correctly identified. Fluconazole-resistant isolates made up 62.3% of the isolates, while echinocandin- or multidrug-resistant isolates were not found. Excellent essential (within two dilutions, 96.7%) and categorical agreements (93.4%) between the Clinical and Laboratory Standards Institute (CLSI) and Vitek 2 (AST-YS07 card) methods were observed for fluconazole. Sequencing ERG11 for all 61 isolates revealed that only 3 fluconazole-resistant isolates showed the Erg11p amino acid substitution K143R. All 61 isolates showed identical multilocus sequence typing (MLST). Pulsed-field gel electrophoresis (PFGE) analyses revealed that both blood and ear isolates had the same or similar patterns. These results show that MALDI-TOF MS and Vitek 2 antifungal susceptibility systems can be reliable diagnostic tools for testing C. auris isolates from Korean hospitals. The Erg11p mutation was seldom found among Korean isolates of C. auris, and multidrug resistance was not found. Both MLST and PFGE analyses suggest that these isolates are genetically similar.


Assuntos
Antifúngicos/farmacologia , Candida/classificação , Candida/efeitos dos fármacos , Candidíase/microbiologia , Candida/isolamento & purificação , Farmacorresistência Fúngica Múltipla/genética , Proteínas Fúngicas/genética , Genótipo , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Técnicas de Tipagem Micológica , República da Coreia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Learn Mem ; 24(12): 612-621, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29142056

RESUMO

Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression in the auditory system of a key synaptic plasticity effector immediate early gene, Arc/Arg3.1, which is required for memory consolidation. We use the ultrasonic communication system between mouse pups and adult females to study whether prior familiarity with pup vocalizations alters how Arc is engaged in the core auditory cortex after playback of novel exemplars from the pup vocal category. A computerized, 3D surface-assisted cellular compartmental analysis, validated against manual cell counts, demonstrates significant changes in the recruitment of neurons expressing Arc in pup-experienced animals (mothers and virgin females "cocaring" for pups) compared with pup-inexperienced animals (pup-naïve virgins), especially when listening to more familiar, natural calls compared to less familiar but similarly recognized tonal model calls. Our data support the hypothesis that the kinetics of Arc induction to refine cortical representations of sensory categories is sensitive to the familiarity of the sensory experience.


Assuntos
Córtex Auditivo/metabolismo , Percepção Auditiva/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Reconhecimento Psicológico/fisiologia , Vocalização Animal/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Animais Recém-Nascidos , Córtex Auditivo/citologia , Proteínas do Citoesqueleto/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Neurônios/classificação , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Ondas Ultrassônicas
6.
BMC Cancer ; 17(1): 535, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28806950

RESUMO

BACKGROUND: Patient-derived xenograft (PDX) models are important tools in precision medicine and for the development of targeted therapies to treat cancer patients. This study aimed to evaluate our precision medicine strategy that integrates genomic profiling and preclinical drug-screening platforms, in order to personalize cancer treatments using PDX models. METHODS: We performed array-comparative genomic hybridization, microarray, and targeted next-generation sequencing analyses, in order to determine the oncogenic driver mutations. PDX cells were obtained from PDXs and subsequently screened in vitro with 17 targeted agents. RESULTS: PDX tumors recapitulated the histopathologic and genetic features of the patient tumors. Among the samples from lung cancer patients that were molecularly-profiled, copy number analysis identified unique focal MET amplification in one sample, 033 T, without RTK/RAS/RAF oncogene mutations. Although HER2 amplification in 033 T was not detected in the cancer panel, the selection of HER2-amplified clones was found in PDXs and PDX cells. Additionally, MET and HER2 overexpression were found in patient tumors, PDXs, and PDX cells. Crizotinib or EGFR tyrosine kinase inhibitor treatments significantly inhibited cell growth and impaired tumor sphere formation in 033 T PDX cells. CONCLUSIONS: We established PDX cell models using surgical samples from lung cancer patients, and investigated their preclinical and clinical implications for personalized targeted therapy. Additionally, we suggest that MET and EGFR inhibitor-based therapy can be used to treat MET and HER2-overexpressing lung cancers, without receptor tyrosine kinase /RAS/RAF pathway alterations.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Medicina de Precisão/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Crizotinibe , Modelos Animais de Doenças , Receptores ErbB/antagonistas & inibidores , Feminino , Amplificação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos SCID , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Receptor ErbB-2/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Infect Immun ; 83(5): 1853-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690103

RESUMO

Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis. It lives and multiplies within the harsh environment of macrophages. In order to investigate how intracellular parasite manipulate the host cell environment, we undertook a quantitative proteomic study of human monocyte-derived macrophages (THP-1) following infection with L. donovani. We used the isobaric tags for relative and absolute quantification (iTRAQ) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare expression profiles of noninfected and L. donovani-infected THP-1 cells. We detected modifications of protein expression in key metabolic pathways, including glycolysis and fatty acid oxidation, suggesting a global reprogramming of cell metabolism by the parasite. An increased abundance of proteins involved in gene transcription, RNA splicing (heterogeneous nuclear ribonucleoproteins [hnRNPs]), histones, and DNA repair and replication was observed at 24 h postinfection. Proteins involved in cell survival and signal transduction were more abundant at 24 h postinfection. Several of the differentially expressed proteins had not been previously implicated in response to the parasite, while the others support the previously identified proteins. Selected proteomics results were validated by real-time PCR and immunoblot analyses. Similar changes were observed in L. donovani-infected human monocyte-derived primary macrophages. The effect of RNA interference (RNAi)-mediated gene knockdown of proteins validated the relevance of the host quantitative proteomic screen. Our findings indicate that the host cell proteome is modulated after L. donovani infection, provide evidence for global reprogramming of cell metabolism, and demonstrate the complex relations between the host and parasite at the molecular level.


Assuntos
Leishmania donovani/imunologia , Macrófagos/química , Macrófagos/parasitologia , Proteoma/análise , Linhagem Celular , Cromatografia Líquida , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Macrófagos/imunologia , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
8.
Sci Rep ; 14(1): 15442, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965312

RESUMO

The human intestinal tract is colonized with microorganisms, which present a diverse array of immunological challenges. A number of antimicrobial mechanisms have evolved to cope with these challenges. A key defense mechanism is the expression of inducible antimicrobial peptides (AMPs), such as beta-defensins, which rapidly inactivate microorganisms. We currently have a limited knowledge of mechanisms regulating the inducible expression of AMP genes, especially factors from the host required in these regulatory mechanisms. To identify the host factors required for expression of the beta-defensin-2 gene (HBD2) in intestinal epithelial cells upon a bacterial challenge, we performed a RNAi screen using a siRNA library spanning the whole human genome. The screening was performed in duplicate to select the strongest 79 and 110 hit genes whose silencing promoted or inhibited HBD2 expression, respectively. A set of 57 hits selected among the two groups of genes was subjected to a counter-screening and a subset was subsequently validated for its impact onto HBD2 expression. Among the 57 confirmed hits, we brought out the TLR5-MYD88 signaling pathway, but above all new signaling proteins, epigenetic regulators and transcription factors so far unrevealed in the HBD2 regulatory circuits, like the GATA6 transcription factor involved in inflammatory bowel diseases. This study represents a significant step toward unveiling the key molecular requirements to promote AMP expression in human intestinal epithelial cells, and revealing new potential targets for the development of an innovative therapeutic strategy aiming at stimulating the host AMP expression, at the era of antimicrobial resistance.


Assuntos
Células Epiteliais , Mucosa Intestinal , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , beta-Defensinas/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Transdução de Sinais , Regulação da Expressão Gênica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Interferência de RNA
9.
NPJ Precis Oncol ; 8(1): 111, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773241

RESUMO

Patient-derived organoids (PDOs) are valuable in predicting response to cancer therapy. PDOs are ideal models for precision oncologists. However, their practical application in guiding timely clinical decisions remains challenging. This study focused on patients with advanced EGFR-mutated non-small cell lung cancer and employed a cancer organoid-based diagnosis reactivity prediction (CODRP)-based precision oncology platform to assess the efficacy of EGFR inhibitor treatments. CODRP was employed to evaluate EGFR-tyrosine kinase inhibitors (TKI) drug sensitivity. The results were compared to those obtained using area under the curve index. This study validated this index by testing lung cancer-derived organoids in 14 patients with lung cancer. The CODRP index-based drug sensitivity test reliably classified patient responses to EGFR-TKI treatment within a clinically suitable 10-day timeline, which aligned with clinical drug treatment responses. This approach is promising for predicting and analyzing the efficacy of anticancer, ultimately contributing to the development of a precision medicine platform.

10.
J Fungi (Basel) ; 9(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888235

RESUMO

We analyzed the virulence traits and azole resistance mechanisms of 104 Candida auris isolates collected from 13 Korean hospitals from 1996 to 2022. Of these 104 isolates, 96 (5 blood and 91 ear isolates) belonged to clade II, and 8 (6 blood and 2 other isolates) belonged to clade I. Fluconazole resistance (minimum inhibitory concentration ≥32 mg/L) was observed in 68.8% of clade II and 25.0% of clade I isolates. All 104 isolates were susceptible to amphotericin B and three echinocandins. In 2022, six clade I isolates indicated the first nosocomial C. auris cluster in Korea. Clade II C. auris isolates exhibited reduced thermotolerance at 42 °C, with diminished in vitro competitive growth and lower virulence in the Galleria mellonella model compared to non-clade II isolates. Of the 66 fluconazole-resistant clade II isolates, several amino acid substitutions were identified: Erg11p in 14 (21.2%), Tac1Ap in 2 (3.0%), Tac1Bp in 62 (93.9%), and Tac1Bp F214S in 33 (50.0%). Although there were a limited number of non-clade II isolates studied, our results suggest that clade II C. auris isolates from Korean hospitals might display lower virulence traits than non-clade II isolates, and their primary fluconazole resistance mechanism is linked to Tac1Bp mutations.

11.
Nat Commun ; 14(1): 6386, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821450

RESUMO

Biological sciences, drug discovery and medicine rely heavily on cell phenotype perturbation and microscope observation. However, most cellular phenotypic changes are subtle and thus hidden from us by natural cell variability: two cells in the same condition already look different. In this study, we show that conditional generative models can be used to transform an image of cells from any one condition to another, thus canceling cell variability. We visually and quantitatively validate that the principle of synthetic cell perturbation works on discernible cases. We then illustrate its effectiveness in displaying otherwise invisible cell phenotypes triggered by blood cells under parasite infection, or by the presence of a disease-causing pathological mutation in differentiated neurons derived from iPSCs, or by low concentration drug treatments. The proposed approach, easy to use and robust, opens the door to more accessible discovery of biological and disease biomarkers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Descoberta de Drogas/métodos , Fenótipo
12.
Ann Lab Med ; 43(6): 614-619, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37387494

RESUMO

Acquired fluconazole resistance (FR) in bloodstream infection (BSI) isolates of Candida albicans is rare. We investigated the FR mechanisms and clinical features of 14 fluconazole non-susceptible (FNS; FR and fluconazole-susceptible dose-dependent) BSI isolates of C. albicans recovered from Korean multicenter surveillance studies during 2006-2021. Mutations causing amino acid substitutions (AASs) in the drug-target gene ERG11 and the FR-associated transcription factor genes TAC1, MRR1, and UPC2 of the 14 FNS isolates were compared with those of 12 fluconazole-susceptible isolates. Of the 14 FNS isolates, eight and seven had Erg11p (K143R, F145L, or G464S) and Tac1p (T225A, R673L, A736T, or A736V) AASs, respectively, which were previously described in FR isolates. Novel Erg11p, Tac1p, and Mrr1p AASs were observed in two, four, and one FNS isolates, respectively. Combined Erg11p and Tac1p AASs were observed in seven FNS isolates. None of the FR-associated Upc2p AASs were detected. Of the 14 patients, only one had previous azole exposure, and the 30-day mortality rate was 57.1% (8/14). Our data show that Erg11p and Tac1p AASs are likely to contribute to FR in C. albicans BSI isolates in Korea and that most FNS C. albicans BSIs develop without azole exposure.


Assuntos
Fluconazol , Sepse , Humanos , Fluconazol/farmacologia , Candida albicans/genética , Azóis , República da Coreia
13.
Genome Med ; 15(1): 16, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36915208

RESUMO

BACKGROUND: Although temozolomide (TMZ) has been used as a standard adjuvant chemotherapeutic agent for primary glioblastoma (GBM), treating isocitrate dehydrogenase wild-type (IDH-wt) cases remains challenging due to intrinsic and acquired drug resistance. Therefore, elucidation of the molecular mechanisms of TMZ resistance is critical for its precision application. METHODS: We stratified 69 primary IDH-wt GBM patients into TMZ-resistant (n = 29) and sensitive (n = 40) groups, using TMZ screening of the corresponding patient-derived glioma stem-like cells (GSCs). Genomic and transcriptomic features were then examined to identify TMZ-associated molecular alterations. Subsequently, we developed a machine learning (ML) model to predict TMZ response from combined signatures. Moreover, TMZ response in multisector samples (52 tumor sectors from 18 cases) was evaluated to validate findings and investigate the impact of intra-tumoral heterogeneity on TMZ efficacy. RESULTS: In vitro TMZ sensitivity of patient-derived GSCs classified patients into groups with different survival outcomes (P = 1.12e-4 for progression-free survival (PFS) and 3.63e-4 for overall survival (OS)). Moreover, we found that elevated gene expression of EGR4, PAPPA, LRRC3, and ANXA3 was associated to intrinsic TMZ resistance. In addition, other features such as 5-aminolevulinic acid negative, mesenchymal/proneural expression subtypes, and hypermutation phenomena were prone to promote TMZ resistance. In contrast, concurrent copy-number-alteration in PTEN, EGFR, and CDKN2A/B was more frequent in TMZ-sensitive samples (Fisher's exact P = 0.0102), subsequently consolidated by multi-sector sequencing analyses. Integrating all features, we trained a ML tool to segregate TMZ-resistant and sensitive groups. Notably, our method segregated IDH-wt GBM patients from The Cancer Genome Atlas (TCGA) into two groups with divergent survival outcomes (P = 4.58e-4 for PFS and 3.66e-4 for OS). Furthermore, we showed a highly heterogeneous TMZ-response pattern within each GBM patient using in vitro TMZ screening and genomic characterization of multisector GSCs. Lastly, the prediction model that evaluates the TMZ efficacy for primary IDH-wt GBMs was developed into a webserver for public usage ( http://www.wang-lab-hkust.com:3838/TMZEP ). CONCLUSIONS: We identified molecular characteristics associated to TMZ sensitivity, and illustrate the potential clinical value of a ML model trained from pharmacogenomic profiling of patient-derived GSC against IDH-wt GBMs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Farmacogenética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioma/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fatores de Transcrição de Resposta de Crescimento Precoce
14.
Chembiochem ; 13(10): 1503-8, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22692979

RESUMO

Cellular imaging has emerged as an important tool to unravel biological complexity and to accelerate the drug-discovery process, including cell-based screening, target identification, and mechanism of action studies. Recently, semiconductor nanoparticles known as quantum dots (QDs) have attracted great interest in cellular imaging applications due to their unique photophysical properties such as size, tunable optical property, multiplexing capability, and photostability. Herein, we show that QDs can also be applied to assay development and eventually to high-throughput/content screening (HTS/HCS) for drug discovery. We have synthesized QDs modified with PEG and primary antibodies to be used as fluorescent probes for a cell-based HTS system. The G protein-coupled receptor (GPCR) family is known to be involved in most major diseases. We therefore constructed human osteosarcoma (U2OS) cells that specifically overexpress two types of differently tagged GPCRs: influenza hemagglutinin (HA) peptide-tagged κ-opioid receptors (κ-ORs) and GFP-tagged A3 adenosine receptors (A3AR). In this study, we have demonstrated that 1) anti-HA antibody-conjugated QDs could specifically label HA-tagged κ-ORs, 2) subsequent treatment of QD-tagged GPCR agonists allowed agonist-induced translocation to be monitored in real time, 3) excellent emission spectral properties of QD permitted the simultaneous detection of two GPCRs in one cell, and 4) the robust imaging capabilities of the QD-antibody conjugates could lead to reproducible quantitative data from high-content cellular images. These results suggest that the present QD-based GPCR inhibitor screening system can be a promising platform for further drug screening applications.


Assuntos
Pontos Quânticos , Receptores Acoplados a Proteínas G/agonistas , Anticorpos/química , Anticorpos/imunologia , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hemaglutininas/imunologia , Humanos , Microscopia Confocal , Polietilenoglicóis/química , Receptor A3 de Adenosina/genética , Receptor A3 de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
15.
Cancer Biol Ther ; 23(1): 96-102, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35193475

RESUMO

Lung carcinoids are neuroendocrine tumors representing 1 to 2% of lung cancers. This study outlines the case of a patient with a metastatic lung atypical carcinoid who presented with a pleural effusion and progression of liver metastases after developing resistance to conventional treatments. Personalized functional profiling (PFP), i.e. drug screening, was performed in ex-vivo spheroids obtained from the patient's liver metastasis to identify potential therapeutic options. The drug screening results revealed cediranib, an antiangiogenic drug, as a hit drug for this patient, from a library of 66 Food and Drug Administration (FDA)-approved and investigational drugs. Based on the PFP results and the reported evidence of clinical efficacy of bevacizumab and capecitabine combination in gastro-intestinal neuroendocrine tumors, this combination was given to the patient. Four months later, the pleural effusion and pleura carcinosis regressed and the liver metastasis did not progress. The patient experienced 2 years of a stable disease under the PFP-guided personalized treatment.


Assuntos
Tumor Carcinoide , Carcinoma Neuroendócrino , Neoplasias Hepáticas , Neoplasias Pulmonares , Segunda Neoplasia Primária , Tumores Neuroendócrinos , Derrame Pleural , Tumor Carcinoide/tratamento farmacológico , Tumor Carcinoide/patologia , Carcinoma Neuroendócrino/patologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Pulmão/patologia , Neoplasias Pulmonares/patologia , Segunda Neoplasia Primária/patologia , Tumores Neuroendócrinos/patologia , Derrame Pleural/patologia
16.
Stem Cell Reports ; 17(10): 2349-2364, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179692

RESUMO

Combining multiple Parkinson's disease (PD) relevant cellular phenotypes might increase the accuracy of midbrain dopaminergic neuron (mDAN) in vitro models. We differentiated patient-derived induced pluripotent stem cells (iPSCs) with a LRRK2 G2019S mutation, isogenic control, and genetically unrelated iPSCs into mDANs. Using automated fluorescence microscopy in 384-well-plate format, we identified elevated levels of α-synuclein (αSyn) and serine 129 phosphorylation, reduced dendritic complexity, and mitochondrial dysfunction. Next, we measured additional image-based phenotypes and used machine learning (ML) to accurately classify mDANs according to their genotype. Additionally, we show that chemical compound treatments, targeting LRRK2 kinase activity or αSyn levels, are detectable when using ML classification based on multiple image-based phenotypes. We validated our approach using a second isogenic patient-derived SNCA gene triplication mDAN model which overexpresses αSyn. This phenotyping and classification strategy improves the practical exploitability of mDANs for disease modeling and the identification of novel LRRK2-associated drug targets.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Aprendizado de Máquina , Mesencéfalo/metabolismo , Mutação , Doença de Parkinson/genética , Doença de Parkinson/terapia , Serina , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
17.
Bioconjug Chem ; 22(8): 1576-86, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21718016

RESUMO

Imaging of specific intracellular target proteins in living cells has been of great challenge and importance for understanding intracellular events and elucidating various biological phenomena. Highly photoluminescent and water-soluble semiconductor nanocrystal quantum dots (QDs) have been extensively applied to various cellular imaging applications due to the long-term photostability and the tunable narrow emission spectra with broad excitation. Despite the great success of various bioimaging and diagnostic applications, visualization of intracellular targets in live cells still has been of great challenge. Nonspecific binding, difficulty of intracellular delivery, or endosomal trapping of nanosized QDs are the main reasons to hamper specific target binding in live cells. In this context, we prepared the polymer-coated QDs (pcQD) of which the surface was optimized for specific intracellular targeting in live cells. Efficient intracellular delivery was achieved through PEGylation and subsequent cell penetrating peptide (i.e., TAT) conjugation to the pcQD in order to avoid significant endosomal sequestration and to facilitate internalization of the QDs, respectively. In this study, we employed HEK293 cell line overexpressing endothelin A receptor (ET(A)R), a family of G-protein coupled receptor (GPCR), of which the cytosolic c-terminal site is genetically engineered to possess green fluorescent protein (GFP) as our intracellular protein target. The fluorescence signal of the target protein and the well-defined intracellular behavior of the GPCR help to evaluate the targeting specificity of QDs in living cells. To test the hypothesis that the TAT-QDs conjugated with antibody against intracellular target of interest can find the target, we conjugated anti-GFP antibody to TAT-PEG-pcQD using heterobifunctional linkers. Compared to the TAT-PEG-pcQD, which was distributed throughout the cytoplasm, the antiGFP-functionalized TAT-PEG-pcQD could penetrate the cell membrane and colocalize with the GFP. An agonist (endothelin-1, ET-1) treatment induced GFP-ET(A)R translocation into pericentriolar region, where the GFP also significantly colocalized with antiGFP-TAT-PEG-pcQD. These results demonstrate that stepwise optimization of PEG-pcQD conjugation with both a cell penetrating peptide and an antibody against a target of interest allows specific binding to the intracellular target protein with minimized nonspecific binding.


Assuntos
Imagem Molecular/métodos , Proteínas/análise , Pontos Quânticos , Anticorpos , Peptídeos Penetradores de Células , Diagnóstico por Imagem , Proteínas de Fluorescência Verde , Células HEK293 , Humanos , Sondas Moleculares/síntese química , Polietilenoglicóis , Ligação Proteica , Proteínas/imunologia , Receptor de Endotelina A
18.
Sci Rep ; 11(1): 1439, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446877

RESUMO

Patient-derived cellular models become an increasingly powerful tool to model human diseases for precision medicine approaches. The identification of robust cellular disease phenotypes in these models paved the way towards high throughput screenings (HTS) including the implementation of laboratory advanced automation. However, maintenance and expansion of cells for HTS remains largely manual work. Here, we describe an integrated, complex automated platform for HTS in a translational research setting also designed for maintenance and expansion of different cell types. The comprehensive design allows automation of all cultivation steps and is flexible for development of methods for variable cell types. We demonstrate protocols for controlled cell seeding, splitting and expansion of human fibroblasts, induced pluripotent stem cells (iPSC), and neural progenitor cells (NPC) that allow for subsequent differentiation into different cell types and image-based multiparametric screening. Furthermore, we provide automated protocols for neuronal differentiation of NPC in 2D culture and 3D midbrain organoids for HTS. The flexibility of this multitask platform makes it an ideal solution for translational research settings involving experiments on different patient-derived cellular models for precision medicine.


Assuntos
Automação Laboratorial , Técnicas de Cultura de Células , Modelos Biológicos , Organoides/citologia , Medicina de Precisão , Avaliação Pré-Clínica de Medicamentos , Humanos
19.
Sci Rep ; 11(1): 21946, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34754035

RESUMO

Parkinson's disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies.


Assuntos
Neurônios Dopaminérgicos/citologia , Mutação , Doença de Parkinson/patologia , alfa-Sinucleína/genética , Linhagem Celular , Neurônios Dopaminérgicos/metabolismo , Humanos , Mitocôndrias , Doença de Parkinson/genética
20.
Cancers (Basel) ; 13(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801414

RESUMO

Atypical chemokine receptors (ACKRs) are important regulators of chemokine functions. Among them, the atypical chemokine receptor ACKR2 (also known as D6) has long been considered as a scavenger of inflammatory chemokines exclusively from the CC family. In this study, by using highly sensitive ß-arrestin recruitment assays based on NanoBiT and NanoBRET technologies, we identified the inflammatory CXC chemokine CXCL10 as a new strong agonist ligand for ACKR2. CXCL10 is known to play an important role in the infiltration of immune cells into the tumour bed and was previously reported to bind to CXCR3 only. We demonstrated that ACKR2 is able to internalize and reduce the availability of CXCL10 in the extracellular space. Moreover, we found that, in contrast to CC chemokines, CXCL10 activity towards ACKR2 was drastically reduced by the dipeptidyl peptidase 4 (DPP4 or CD26) N-terminal processing, pointing to a different receptor binding pocket occupancy by CC and CXC chemokines. Overall, our study sheds new light on the complexity of the chemokine network and the potential role of CXCL10 regulation by ACKR2 in many physiological and pathological processes, including tumour immunology. Our data also testify that systematic reassessment of chemokine-receptor pairing is critically needed as important interactions may remain unexplored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA