Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 480
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38879753

RESUMO

Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.

2.
Funct Integr Genomics ; 24(2): 62, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514486

RESUMO

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1-/- larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1-/- larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1-/- larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.


Assuntos
Opsinas dos Cones , Peixe-Zebra , Animais , Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Opsinas dos Cones/genética , Comportamento Alimentar , Visão Ocular/genética
3.
Small ; 20(12): e2307021, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37940629

RESUMO

Electrochemically reversible conversion of I2/I- redox couple in a controllable iodine speciation manner is the eternal target for practical metal-iodine batteries. This contribution demonstrates an advanced polyiodide-free Zn-I2 battery achieved by the bidirectional confined redox catalysis-directed quasi-solid iodine conversion. A core-shell structured iodine cathode is fabricated by integrating multiporous Prussian blue nanocubes as a catalytic mediator, and the polypyrrole sheath afforded a confinement environment that favored the iodine redox. The zincate Znx+1FeIII/II[Fe(CN)6]y has substantially faster zinc-ion intercalation kinetics and overlapping kinetic voltage profiles compared with the I2/ZnI2 redox, and behave as a redox mediator that catalyze reduction of polyiodides via chemical redox reactions during battery discharging and an exemplary reaction is Zn(I3)2+2Znx+1FeII[Fe(CN)6]y=3ZnI2+2ZnxFeIII[Fe(CN)6]y,ΔG=-19.3 kJ mol-1). During the following recharging process, the electrodeposited ZnI2 can be facially activated by iron redox hotspots, and the ZnxFe[FeIII/II(CN)6]y served as a cation-transfer mediator and spontaneously catalyze polyiodides oxidation (Zn(I3)2+2ZnxFe[FeIII(CN)6]y=3I2+2Znx+1Fe[FeII(CN)6]y,ΔG = -7.72 kJ mol-1), manipulating the reversible one-step conversion of ZnI2 back to I2. Accordingly, a flexible solid-state battery employing the designed cathode can deliver an energy density of 215 Wh kgiodine -1.

4.
Small ; : e2402101, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888117

RESUMO

Tumor-associated macrophages (TAMs) play a crucial function in solid tumor antigen clearance and immune suppression. Notably, 2D transitional metal dichalcogenides (i.e., molybdenum disulfide (MoS2) nanozymes) with enzyme-like activity are demonstrated in animal models for cancer immunotherapy. However, in situ engineering of TAMs polarization through sufficient accumulation of free radical reactive oxygen species for immunotherapy in clinical samples remains a significant challenge. In this study, defect-rich metastable MoS2 nanozymes, i.e., 1T2H-MoS2, are designed via reduction and phase transformation in molten sodium as a guided treatment for human breast cancer. The as-prepared 1T2H-MoS2 exhibited enhanced peroxidase-like activity (≈12-fold enhancement) than that of commercial MoS2, which is attributed to the charge redistribution and electronic state induced by the abundance of S vacancies. The 1T2H-MoS2 nanozyme can function as an extracellular hydroxyl radical generator, efficiently repolarizing TAMs into the M1-like phenotype and directly killing cancer cells. Moreover, the clinical feasibility of 1T2H-MoS2 is demonstrated via ex vivo therapeutic responses in human breast cancer samples. The apoptosis rate of cancer cells is 3.4 times greater than that of cells treated with chemotherapeutic drugs (i.e., doxorubicin).

5.
Clin Exp Immunol ; 216(2): 132-145, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386917

RESUMO

Natural killer (NK) cells were reported to be involved in the pathogenesis of primary antiphospholipid syndrome (pAPS). Immunosuppressive receptor T-cell immunoreceptor with Ig and ITIM domains (TIGIT) and activating receptor cluster of differentiation 226 (CD226) are specifically expressed on NK cells with competitive functions. This study aims to investigate the expression diversities of CD226/TIGIT on NK subsets and their associations with NK subsets activation phenotypes and potential clinical significance, furthermore, to explore potential cause for CD226/TIGIT expression diversities in pAPS. We comparatively assessed the changes of CD56brightNK, CD56dimNK, and NK-like cells in 70 pAPS patients compared with control groups, including systemic lupus erythematosus, asymptomatic antiphospholipid antibodies carriers (asymp-aPLs carriers), and healthy controls and their expression diversities of CD226/TIGIT by flow cytometry. CD25, CD69, CD107α expression, and interferon gamma (IFN-γ) secretion levels of NK subsets were detected to determine the potential association of CD226/TIGIT expression with NK subsets phenotypes. CD226/TIGIT expression levels were compared among different subgroups divided by aPLs status. Moreover, in vitro cultures were conducted to explore the potential mechanisms of CD226/TIGIT expression imbalance. CD56brightNK and CD3+CD56+NK-like cells were significantly increased while CD56dimNK cells were obviously decreased in pAPS, and CD56brightNK and NK-like cells exhibited significantly higher CD226 but lower TIGIT expressions. CD226+CD56brightNK and TIGIT-CD56brightNK cells show higher CD69 expression and IFN-γ secretion capacity, and CD226+NK-like and TIGIT-NK-like cells showed higher expressions of CD25 and CD69 but lower apoptosis rate than CD226- and TIGIT+CD56brightNK/NK-like cells, respectively. The imbalanced CD226/TIGIT expressions were most significant in aPLs triple-positive group. Imbalanced expressions of CD226/TIGIT on CD56brightNK and NK-like cells were aggravated after interleukin-4 (IL-4) stimulation and recovered after tofacitinib blocking. Our data revealed significant imbalanced CD226/TIGIT expressions on NK subsets in pAPS, which closely associated with NK subsets phenotypes and more complicated autoantibody status. CD226/TIGIT imbalanced may be affected by IL-4/Janus Kinase (JAK) pathway activation.

6.
J Transl Med ; 22(1): 533, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831470

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common disease in the urinary system, with a high incidence and poor prognosis in advanced stages. Although γ-interferon-inducible protein 16 (IFI16) has been reported to play a role in various tumors, its involvement in ccRCC remains poorly documented, and the molecular mechanisms are not yet clear. METHODS: We conducted bioinformatics analysis to study the expression of IFI16 in ccRCC using public databases. Additionally, we analyzed and validated clinical specimens that we collected. Subsequently, we explored the impact of IFI16 on ccRCC cell proliferation, migration, and invasion through in vitro and in vivo experiments. Furthermore, we predicted downstream molecules and pathways using transcriptome analysis and confirmed them through follow-up experimental validation. RESULTS: IFI16 was significantly upregulated in ccRCC tissue and correlated with poor patient prognosis. In vitro, IFI16 promoted ccRCC cell proliferation, migration, and invasion, while in vivo, it facilitated subcutaneous tumor growth and the formation of lung metastatic foci. Knocking down IFI16 suppressed its oncogenic function. At the molecular level, IFI16 promoted the transcription and translation of IL6, subsequently activating the PI3K/AKT signaling pathway and inducing epithelial-mesenchymal transition (EMT). CONCLUSION: IFI16 induced EMT through the IL6/PI3K/AKT axis, promoting the progression of ccRCC.


Assuntos
Carcinoma de Células Renais , Movimento Celular , Proliferação de Células , Progressão da Doença , Transição Epitelial-Mesenquimal , Interleucina-6 , Neoplasias Renais , Proteínas Nucleares , Fosfatidilinositol 3-Quinases , Fosfoproteínas , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animais , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Invasividade Neoplásica , Masculino , Feminino , Prognóstico
7.
Osteoporos Int ; 35(1): 53-67, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37698600

RESUMO

We examined the performance of an intelligent fracture liaison service (FLS) assisted by digital health (DH) to reduce all-cause mortality (ACM) risk. According to our findings, the new FLS reduced ACM by 36%. INTRODUCTION: A well-designed secondary prevention program known as FLS enhances the bone densitometry-based assessment rate as well as osteoporosis (OP) medication usage following a fracture. However, there are only a few reports on FLS incorporating DH, and it remains unclear whether this integration has influenced patient ACM, which refers to the overall death rate from any cause during the study period. METHODS: This retrospective observational study was conducted on data from the Fragility Fracture Registration System database linked to the Regional Health Registration Platform of Kunshan City and the Population Death Registration System of Jiangsu Province for one tertiary-level A hospital in China. Patients aged ≥ 50 years, who experienced an OP fracture between January 1, 2017, and July 27, 2022, requiring hospitalization, were selected for analysis. We compared the outcomes of patients who received routine fragility fracture management (the no-FLS group) or FLS (the FLS group). We employed multivariable Cox regression with inverse probability weighting based on the propensity score (PS). RESULTS: Of 2317 patients, 756 (32.6%) received FLS and 1561 (67.4%) did not. Using PS matching, we minimized the baseline characteristic differences between the two groups in the propensity score-matched samples, relative to the unmatched samples. Based on our analysis, the new FLS reduced ACM by 36% (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.47 to 0.87; P-value = 0.004). Moreover, FLS patients experienced further reductions in fall-related mortality, refracture rate, and total refracture-related hospital costs, and had increased dual-energy X-ray absorptiometry (DXA) testing and treatment initiation rates, relative to the no-FLS patients. CONCLUSIONS: A new FLS model implementation assisted by DH can effectively reduce ACM among elderly patients with OP fractures requiring surgery. In future investigations, we recommend examining the scalability of this model.


Assuntos
Conservadores da Densidade Óssea , Osteoporose , Fraturas por Osteoporose , Idoso , Humanos , Fraturas por Osteoporose/epidemiologia , Saúde Digital , Conservadores da Densidade Óssea/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/epidemiologia , Absorciometria de Fóton , Prevenção Secundária
8.
Osteoporos Int ; 35(7): 1249-1259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38771526

RESUMO

This large-scale prospective study showed that a significant association between longer duration of daily outdoor walking and reduced osteoporosis risk was found among older adults, particularly among those with a low genetic predisposition to osteoporosis, which highlighted the importance of outdoor walking as a simple, cost-effective adjunct for preventing osteoporosis. PURPOSE: The available cross-sectional data and small-scale studies indicate that outdoor walking benefits bone metabolism. Nevertheless, there is a scarcity of comprehensive prospective research investigating the enduring correlation between outdoor walking and osteoporosis. This study aims to conduct a prospective analysis of the correlation between outdoor walking and osteoporosis while also examining potential variations influenced by genetic susceptibility to osteoporosis. METHODS: 24,700 older adults without osteoporosis at baseline were enrolled. These individuals were followed up until December 31, 2021, during which data on outdoor walking was gathered. The genetic risk score for osteoporosis was comprised of 14 single-nucleotide polymorphisms. RESULTS: 4,586 cases of osteoporosis were identified throughout a median follow-up period of 37.3 months. Those who walked outside for > 30 but ≤ 60 min per day had a hazard ratio (HR) of 0.83 (95% confidence interval (CI): 0.72-0.95) for incident osteoporosis, whereas those who walked outside for > 60 min per day had an HR of 0.60 (95% CI: 0.39-0.92). We found that osteoporosis risk exhibited a declining trend in individuals with low genetic risk. Individuals walking outside for > 60 min per day tended to have the lowest overall osteoporosis risk among those with high genetic risk. CONCLUSIONS: A significant negative correlation exists between an extended period of daily outdoor walking and osteoporosis incidence risk. This correlation is particularly pronounced among individuals with low genetic risk. The results above underscore the significance of outdoor walking as a simple and economical adjunct to public health programs to prevent osteoporosis.


Assuntos
Predisposição Genética para Doença , Osteoporose , Polimorfismo de Nucleotídeo Único , Caminhada , Humanos , Feminino , Idoso , Masculino , Caminhada/fisiologia , Estudos Prospectivos , Osteoporose/genética , Osteoporose/epidemiologia , Incidência , Pessoa de Meia-Idade , Fatores de Risco , Medição de Risco/métodos , Idoso de 80 Anos ou mais , Densidade Óssea/genética , Densidade Óssea/fisiologia
9.
Osteoporos Int ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844560

RESUMO

We conducted a retrospective cohort analysis to examine the association between hemoglobin (Hb) levels and refracture risk in elderly patients with osteoporotic fractures (OPFs). Our findings suggest a nonlinear relationship exists in females, and females with Hb levels below 10.7 g/dL may be at a higher risk of refracture. INTRODUCTION: Hematopoiesis and bone health have a reciprocal influence on each other. Nevertheless, there is a scarcity of in-depth research on the association between Hb levels and the occurrence of fractures. The present research aimed to investigate the correlation between Hb levels and the rate of refracture within 5 years among individuals with OPFs. METHODS: A retrospective cohort analysis was undertaken between 2017 and 2022. The study included 1906 individuals who were inhabitants of Kunshan and were over 60 years old. These individuals had experienced an OPF between January 1, 2017, and July 27, 2022, resulting in their hospitalization. Cox proportional hazard regression models were used to evaluate the risk of refracture within 5 years based on the Hb levels acquired during the admission examination, with consideration for sex differences. A nonlinear relationship was identified using smoothed curve fitting and threshold analysis. Kaplan-Meier curves were used to compare refracture rates between patients with low and high Hb levels. RESULTS: Elderly female patients with OPFs and lower Hb levels exhibited a significantly higher risk of a 5-year refracture. Conversely, no significant associations were observed between the two variables in male patients. A nonlinear correlation was found between Hb levels and the probability of refracture in females, with a turning point identified at 10.7 g/dL of Hb levels. A strong negative association was observed with the five-year refracture rate when Hb levels fell below 10.7 g/dL (hazard ratio (HR) = 0.63; 95% confidence interval (CI) 0.48 to 0.83; P-value = 0.0008). This finding suggests that for every 1 g/dL increase in Hb below 10.7 g/dL, the risk of refracture reduced by 37%. However, no statistically significant association was observed when Hb levels were above 10.7 g/dL. CONCLUSIONS: The findings demonstrated a significant negative correlation between Hb levels and the likelihood of refracture in elderly female patients with OPFs and suggested that elderly females with recent OPFs and Hb levels below 10.7 g/dL may be at a higher risk of refracture. Additionally, the Hb levels can serve as an indicator of bone fragility in elderly female patients with OPFs. These findings highlight the importance of monitoring Hb levels as a part of comprehensive management strategies to both assess skeletal health and prevent refractures in this population.

10.
Opt Lett ; 49(12): 3324-3327, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875611

RESUMO

A multimode interference methane sensor based on a ZIF-8/PDMS composite film is proposed. The sensing principle is that the refractive index of the ZIF-8/PDMS composite film changes when it adsorbs methane, leading to a measurable optical path difference during the coupling of the cladding higher-order modes and the fundamental mode in the multimode interference fiber (MMI). The environmental methane concentration is then detectable by detecting the wavelength shifts of the interference peaks in the resulted spectrum. Through simulations and experiments aimed at enhancing sensor sensitivity, we optimized three parameters within the sensor structure: the length of the Tapered Single-Mode Fiber (TSMF), the composite film thickness, and the TSMF taper diameter. The experimental results indicate that the sensor's sensitivity reaches a maximum of 0.231 nm%-1. Additionally, the sensor exhibits excellent structural stability and measurement repeatability. The response time is as short as 40 s, and the recovery time ranges between 3 and 5 min. The proposed multimode interferometric methane sensor based on the ZIF-8/PDMS composite film has great potential to support highly sensitive methane concentration detection in many applications.

11.
Acta Pharmacol Sin ; 45(5): 900-913, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225393

RESUMO

Autophagy impairment is a key factor in Alzheimer's disease (AD) pathogenesis. TFEB (transcription factor EB) and TFE3 (transcription factor binding to IGHM enhancer 3) are nuclear transcription factors that regulate autophagy and lysosomal biogenesis. We previously showed that corynoxine (Cory), a Chinese medicine compound, protects neurons from Parkinson's disease (PD) by activating autophagy. In this study, we investigated the effect of Cory on AD models in vivo and in vitro. We found that Cory improved learning and memory function, increased neuronal autophagy and lysosomal biogenesis, and reduced pathogenic APP-CTFs levels in 5xFAD mice model. Cory activated TFEB/TFE3 by inhibiting AKT/mTOR signaling and stimulating lysosomal calcium release via transient receptor potential mucolipin 1 (TRPML1). Moreover, we demonstrated that TFEB/TFE3 knockdown abolished Cory-induced APP-CTFs degradation in N2aSwedAPP cells. Our findings suggest that Cory promotes TFEB/TFE3-mediated autophagy and alleviates Aß pathology in AD models.


Assuntos
Doença de Alzheimer , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Modelos Animais de Doenças , Canais de Potencial de Receptor Transitório , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Camundongos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
12.
BMC Pediatr ; 24(1): 272, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664650

RESUMO

INTRODUCTION: Neonatal respiratory failure (NRF) is a serious condition that often has high mortality and morbidity, effective interventions can be delivered in the future by identifying the risk factors associated with morbidity and mortality. However, recent advances in respiratory support have improved neonatal intensive care units (NICUs) care in China. We aimed to provide an updated review of the clinical profile and outcomes of NRF in the Jiangsu province. METHODS: Infants treated for NRF in the NICUs of 28 hospitals between March 2019 and March 2022 were retrospectively reviewed. Data collected included baseline perinatal and neonatal parameters, NICU admission- and treatment-related data, and patient outcomes in terms of mortality, major morbidity, and survival without major morbidities. RESULTS: A total of 5548 infants with NRF were included in the study. The most common primary respiratory disorder was respiratory distress syndrome (78.5%). NRF was managed with non-invasive and invasive respiratory support in 59.8% and 14.5% of patients, respectively. The application rate of surfactant therapy was 38.5%, while that of neonatal extracorporeal membrane oxygenation therapy was 0.2%. Mortality and major morbidity rates of 8.5% and 23.2% were observed, respectively. Congenital anomalies, hypoxic-ischemic encephalopathy, invasive respiratory support only and inhaled nitric oxide therapy were found to be significantly associated with the risk of death. Among surviving infants born at < 32 weeks of gestation or with a birth weight < 1500 g, caffeine therapy and repeat mechanical ventilation were demonstrated to significantly associate with increased major morbidity risk. CONCLUSION: Our study demonstrates the current clinical landscape of infants with NRF treated in the NICU, and, by proxy, highlights the ongoing advancements in the field of perinatal and neonatal intensive care in China.


Assuntos
Unidades de Terapia Intensiva Neonatal , Síndrome do Desconforto Respiratório do Recém-Nascido , Humanos , Recém-Nascido , China/epidemiologia , Estudos Retrospectivos , Feminino , Masculino , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Insuficiência Respiratória/terapia , Surfactantes Pulmonares/uso terapêutico , Surfactantes Pulmonares/administração & dosagem , Oxigenação por Membrana Extracorpórea , Respiração Artificial/estatística & dados numéricos , Resultado do Tratamento
13.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257631

RESUMO

Intelligent vehicles are constrained by road, resulting in a disparity between the assumed six degrees of freedom (DoF) motion within the Visual Simultaneous Localization and Mapping (SLAM) system and the approximate planar motion of vehicles in local areas, inevitably causing additional pose estimation errors. To address this problem, a stereo Visual SLAM system with road constraints based on graph optimization is proposed, called RC-SLAM. Addressing the challenge of representing roads parametrically, a novel method is proposed to approximate local roads as discrete planes and extract parameters of local road planes (LRPs) using homography. Unlike conventional methods, constraints between the vehicle and LRPs are established, effectively mitigating errors arising from assumed six DoF motion in the system. Furthermore, to avoid the impact of depth uncertainty in road features, epipolar constraints are employed to estimate rotation by minimizing the distance between road feature points and epipolar lines, robust rotation estimation is achieved despite depth uncertainties. Notably, a distinctive nonlinear optimization model based on graph optimization is presented, jointly optimizing the poses of vehicle trajectories, LPRs, and map points. The experiments on two datasets demonstrate that the proposed system achieved more accurate estimations of vehicle trajectories by introducing constraints between the vehicle and LRPs. The experiments on a real-world dataset further validate the effectiveness of the proposed system.

14.
Nano Lett ; 23(4): 1459-1466, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758173

RESUMO

Electrocatalytic nitrate to ammonia conversion is a key reaction for energy and environmental sustainability. This reaction involves complex multi electron and proton transfer steps, and is impeded by the lack of catalyst for promoting both reactivity and ammonia selectivity. Here, we demonstrate active motifs based on the Chevrel phase Co2Mo6S8 exhibit an enzyme-like high turnover frequency of ∼95.1 s-1 for nitrate electroreduction to ammonia. We reveal strong synergy of multiple binding sites on this catalyst, such that the ligand effect of Co steers Had* toward hydrogenation other than hydrogen evolution, the ensemble effect of Co, and the spatial confinement effect that promote the full hydrogenation of NOx to ammonia without N-N coupling. The catalyst exhibits almost exclusive ammonia conversion with a Faradaic efficiency of 97.1% and ammonia yielding rate of 115.5 mmol·gcat-1·h-1 in neutral electrolytes. The high activity was also confirmed in electrolytes with dilute nitrate and high chloride concentrations.

15.
Angew Chem Int Ed Engl ; 63(6): e202317776, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117014

RESUMO

The broader implementation of current all-solid-state Na-S batteries is still plagued by high operation temperature and inefficient sulfur utilization. And the uncontrollable sulfur speciation pathway along with the sluggish polysulfide redox kinetics further compromise the theoretical potentials of Na-S chemistry. Herein, we report a confined bidirectional tandem electrocatalysis effect to tune polysulfide electrochemistry in a novel low-temperature (80 °C) all-solid-state Na-S battery that utilizes Na3 Zr2 Si2 PO12 ceramic membrane as a platform. The bifunctional hollow sulfur matrix consisting binary atomically dispersed MnN4 and CoN4 hotspots was fabricated using a sacrificial template process. Upon discharge, CoN4 sites activate sulfur species and catalyze long-chain to short-chain polysulfides reduction, while MnN4 centers substantially accelerate the low-kinetic Na2 S4 to Na2 S directly conversion, manipulating the uniform deposition of electroactive Na2 S and avoiding the formation of irreversible products (e.g., Na2 S2 ). The intrinsic synergy of two catalytic centers benefits the Na2 S decomposition and minimizes its activation barrier during battery recharging and then efficiently mitigate the cathodic passivation. As a result, the stable cycling of all-solid-state Na-S cell delivers an attractive reversible capacity of 1060 mAh g-1 with a high CE of 98.5 % and a high energy of 1008 Wh kgcathode -1 , comparable to the liquid electrolyte cells.

16.
Angew Chem Int Ed Engl ; 63(19): e202402274, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38415322

RESUMO

The high theoretical energy density (1274 Wh kg-1) and high safety enable the all-solid-state Na-S batteries with great promise for stationary energy storage system. However, the uncontrollable solid-liquid-solid multiphase conversion and its associated sluggish polysulfides redox kinetics pose a great challenge in tunning the sulfur speciation pathway for practical Na-S electrochemistry. Herein, we propose a new design methodology for matrix featuring separated bi-catalytic sites that control the multi-step polysulfide transformation in tandem and direct quasi-solid reversible sulfur conversion during battery cycling. It is revealed that the N, P heteroatom hotspots are more favorable for catalyzing the long-chain polysulfides reduction, while PtNi nanocrystals manipulate the direct and full Na2S4 to Na2S low-kinetic conversion during discharging. The electrodeposited Na2S on strongly coupled PtNi and N, P-codoped carbon host is extremely electroreactive and can be readily recovered back to S8 without passivation of active species during battery recharging, which delivers a true tandem electrocatalytic quasi-solid sulfur conversion mechanism. Accordingly, stable cycling of the all-solid-state soft-package Na-S pouch cells with an attractive specific capacity of 876 mAh gS -1 and a high energy of 608 Wh kgcathode -1 (172 Wh kg-1, based on the total mass of cathode and anode) at 60 °C are demonstrated.

17.
J Am Chem Soc ; 145(19): 10890-10898, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37155826

RESUMO

It is challenging to achieve high selectivity over Pt-metal-oxide catalysts widely used in many selective oxidation reactions because Pt is prone to over-oxidize substrates. Herein, our sound strategy for enhancing the selectivity is to saturate the under-coordinated single Pt atoms with Cl- ligands. In this system, the weak electronic metal-support interactions between Pt atoms and reduced TiO2 cause electron extraction from Pt to Cl- ligands, resulting in strong Pt-Cl bonds. Therefore, the two-coordinate single Pt atoms adopt a four-coordinate configuration and thus inactivated, thereby inhibiting the over-oxidation of toluene over Pt sites. The selectivity for the primary C-H bond oxidation products of toluene was increased from 50.1 to 100%. Meanwhile, the abundant active Ti3+ sites were stabilized in reduced TiO2 by Pt atoms, leading to a rising yield of the primary C-H oxidation products of 249.8 mmol gcat-1. The reported strategy holds great promise for selective oxidation with enhanced selectivity.

18.
Funct Integr Genomics ; 23(1): 67, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36840800

RESUMO

Carbohydrates are the most economical source of energy in fish feeds, but most fish have limited ability to utilize carbohydrates. It has been reported that phosphoenolpyruvate carboxykinase 1 (pck1) is involved in carbohydrate metabolism, lipid metabolism, and other metabolic processes. However, direct evidence is lacking to fully understand the relationship between pck1 and glucose and lipid metabolism. Here, we generated a pck1 knockout zebrafish by CRISPR/cas9 system, and a high-carbohydrate diet was provided to 60 days post-fertilization (dpf) for 8 weeks. We found that pck1-deficient zebrafish displayed decreased plasma glucose, elevated mRNA levels of glycolysis-related genes (gck, pfk, pk), and reduced the transcriptional levels of gluconeogenic genes (pck1, fbp1a) in liver. We also found decreased triglyceride, total cholesterol, and lipid accumulation and in pck1-/- zebrafish, along with downregulation of genes for lipolysis (acaca) and lipogenesis (cpt1). In addition, the observation of HE staining revealed that the total muscle area of pck1-/- was substantially less than that of WT zebrafish and real-time PCR suggested that GH/IGF-1 signaling (ulk2, stat1b) may be suppressed in pck1-deficient fish. Taken together, these findings suggested that pck1 may play an important role in the high-carbohydrate diet utilization of fish and significantly affected lipid metabolism and protein synthesis in zebrafish. pck1 knockout mutant line could facilitate a further mechanism study of pck1-associated metabolic regulation and provide new information for improving carbohydrate utilization traits.


Assuntos
Glucose , Fosfoenolpiruvato Carboxiquinase (GTP) , Peixe-Zebra , Animais , Glucose/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Nutrientes , Peixe-Zebra/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
Funct Integr Genomics ; 23(2): 168, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204625

RESUMO

pax6 is a canonic master gene for eye formation. Knockout of pax6 affects the development of craniofacial skeleton and eye in mice. Whether pax6 affects the development of spinal bone has not been reported yet. In the present study, we used CRISPR/Cas9 system to generate Olpax6.1 mutant in Japanese medaka. Phenotype analysis showed that ocular mutation caused by the Olpax6.1 mutation occurred in the homozygous mutant. The phenotype of heterozygotes is not significantly different from that of wild-type. In addition, knockout Olpax6.1 resulted in severe curvature of the spine in the homozygous F2 generation. Comparative transcriptome analysis and qRT-PCR revealed that the defective Olpax6.1 protein caused a decrease in the expression level of sp7, col10a1a, and bglap, while the expression level of xylt2 did not change significantly. The functional enrichment of differentially expressed genes (DEGs) using the Kyoto Encyclopedia of Genes and Genomes database showed that the DEGs between Olpax6.1 mutation and wild-type were enriched in p53 signaling pathway, extracellular matrix (ECM) -receptor interaction, et al. Our results indicated that the defective Olpax6.1 protein results in the reduction of sp7 expression level and the activation of p53 signaling pathway, which leads to a decrease in the expression of genes encoding ECM protein, such as collagen protein family and bone gamma-carboxyglutamate protein, which further inhibits bone development. Based on the phenotype and molecular mechanism of ocular mutation and spinal curvature induced by Olpax6.1 knockout, we believe that the Olpax6.1-/- mutant could be a potential model for the study of spondylo-ocular syndrome.


Assuntos
Oryzias , Animais , Camundongos , Oryzias/genética , Oryzias/metabolismo , Camundongos Knockout , Proteína Supressora de Tumor p53/genética , Mutação
20.
Small ; 19(31): e2207046, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36960674

RESUMO

The preparation of room temperature phosphorescent carbon dots still faces great challenges, especially in the case of carbon dots endowed of visible-light excitable room temperature phosphorescence (RTP). To date, a limited number of substrates have been exploited to synthesize room temperature phosphorescent carbon dots, and most of them can emit RTP only in solid state. Here, the synthesis of a composite obtained from the calcination of green carbon dots (g-CDs) blended with aluminum hydroxide (Al(OH)3 ) is reported. The resultant hybrid material g-CDs@Al2 O3 exhibits blue fluorescence and green RTP emissions in an on/off switch process at 365 nm. Notably, this composite manifests strong resistance to extreme acid and basic conditions up to 30 days of treatment. The dense structure of Al2 O3 formed by calcination contributes to the phosphorescent emission of g-CDs. Surprisingly, g-CDs@Al2 O3 can also emit yellow RTP under irradiation with white light. The multicolor emissions can be employed for anti-counterfeiting and information encryption. This work provides a straightforward approach to produce room temperature phosphorescent carbon dots for a wide range of applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA