Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Molecules ; 27(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35458774

RESUMO

In the current study, we determined the antioxidant properties of "Greco" grape cane extracts, a typical cultivar of southern Italy. We also explored the anticancer activity of the polyphenol-rich fraction of the extract on head and neck squamous carcinoma cells (HNSCC) and investigated the underlying mechanism. Aqueous extracts were prepared at different pHs and extraction times and the total phenolic and reducing sugar contents were estimated. Radical Scavenging Activity (RSA), Ferric Reducing Antioxidant Power (FRAP), and Total Antioxidant Capacity (TAC) of the extracts were measured. A polyphenol-rich fraction, accounting for 6.7% by weight and characterized mainly by procyanidins and stilbenoids, was prepared from the extract obtained at pH 7 for 60 min. We demonstrated that the extract exerted a cytotoxic effect on HNSCC cell lines by inducing cell cycle arrest via cyclin downregulation and p21 upregulation, and by triggering apoptosis through caspase cascade activation, PARP-1 cleavage, and an increase in the Bax/Bcl-2 ratio. We furnished evidence that the polyphenol-rich fraction played the major role in the anticancer activity of the extract. These outcomes highlighted grape canes from the "Greco" cultivar as a valuable source of polyphenols that may represent good candidates for the design of innovative adjuvant therapies in the treatment of HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Vitis , Antioxidantes/química , Antioxidantes/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
2.
Int J Food Sci Nutr ; 71(4): 410-423, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31544542

RESUMO

Total phenolic content and antioxidant activity of polar extracts of edible resources from Fedora hemp cultivar (Cannabis sativa L.), namely seed, flour and oil, were evaluated. The main components in the polar extracts were identified using HPLC-DAD and HPLC-ESI-MS/MS. As expected, the molecular profile of components from seeds and flour was strictly similar, dominated by N-trans-caffeoyltyramine. The profile of oil polar extracts contained hydroxycinnamic acid derivatives and cannabinoids at lower extent. While the extracts from hemp seed and flour did not interfere with growth of Caco-2 and HT-29 cell, the one from oil (150 µg/mL) significantly reduced cell viability after 24 h of treatment. This effect was associated with the activation of apoptotic cell death and was independent from the antioxidant capacity of the oil polar extract. Notably, HT-29 cells differentiated with sodium butyrate were not sensitive to the cytotoxic effect of the oil extract.


Assuntos
Antioxidantes/farmacologia , Cannabis/química , Neoplasias Colorretais/tratamento farmacológico , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Canabinoides/análise , Proliferação de Células/efeitos dos fármacos , Farinha/análise , Células HT29 , Humanos , Fenóis , Extratos Vegetais/química , Óleos de Plantas/química , Sementes/química , Espectrometria de Massas em Tandem
3.
Molecules ; 24(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546790

RESUMO

In this study, chestnut shells (CS) were used in order to obtain bioactive compounds through different extraction procedures. The aqueous extracts were chemically characterized. The highest extraction yield and total phenolic content was obtained by conventional liquid extraction (CLE). Gallic and protocatechuic acids were the main simple phenols in the extract, with 86.97 and 11.20 mg/g chestnut shells dry extract (CSDE), respectively. Six tumor cell lines (DU 145, PC-3, LNCaP, MDA-MB-231, MCF-7, and HepG2) and one normal prostate epithelial cell line (PNT2) were exposed to increasing concentration of CSDE (1-100 µg/mL) for 24 h, and cell viability was evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide MTT assay. A reduced rate in cell viability was observed in DU 145, PC-3, LNCaP, and MCF-7 cells, while viability of the other assessed cells was not affected, except for PNT2 cells at a concentration of 100 µg/mL. Furthermore, CSDE-at concentrations of 55.5 and 100 µg/mL-lead to a significant increase of apoptotic cells in DU 145 cells of 28.2% and 61%, respectively. In conclusion, these outcomes suggested that CS might be used for the extraction of several polyphenols that may represent good candidates for alternative therapies or in combination with current chemotherapeutics.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Fagaceae/química , Extratos Vegetais/farmacologia , Água/química , Linhagem Celular Tumoral , Humanos , Fenóis/análise
4.
J Food Sci Technol ; 56(11): 4982-4991, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31741522

RESUMO

Non-Saccharomyces yeasts are metabolically active during grape must fermentations and can contribute with enzymes and metabolites to enhance the complexity and to define the final wine aroma. Nowadays, the use of non-Saccharomyces yeasts in combination with Saccharomyces cerevisiae is a state-of-the art strategy to improve wine composition and/or wine sensory properties. The present paper deals with the new yeast strains of Metschnikowia fructicola and S. cerevisiae, that were selected as representatives of the yeast microbiota isolated from grapes and grape juice of Aglianico cultivar. S. cerevisiae was utilized both as single strain starter and in combination with M. fructicola in experimental fermentations of Aglianico must. The dynamic of yeast populations was evaluated during the fermentation process analyzing the wine volatile compounds profile. The volatile compounds were identified by SPME-GC/MS. The results, showed that the multiple indigenous yeast starter was able to modulate the volatile compounds profiles and improve the aromatic complexity of wine, with a higher content of esters and terpenes.

5.
Biopolymers ; 109(10): e23118, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29608017

RESUMO

In this work, a new exploitation of the thermostable ß-glycosidase from Sulfolobus solfataricus expressed in Saccharomyces cerevisiae to create functional foods for low lactose diets was evaluated. For this purpose, the lactose hydrolysis reaction using immobilized and soluble enzymes was investigated. Activity and stability at different conditions of pH and temperature were tested. The immobilization process had a big impact on the catalysis performance, leading to an enhancement of the enzymatic reaction rate on lactose, as demonstrated by the increasing of 2 and 2.5 folds of Kcat and Kcat /KM , respectively. Moreover, the maximal activity for the immobilized form was referred at pH 6.5 instead of 7.0, leading to an improvement of the catalytic performance at milk pHs. Although the soluble enzyme was already weakly inhibited by the reaction products, the immobilization further reduced the inhibitory action of glucose increasing the Ki from 96.7 to 110.4 mM. Finally, the immobilized enzyme showed high hydrolysis rate in whole milk that yielded 99% of lactose breakdown in 10 and 30 min at 60 and 40°C, respectively. These results support the application of the immobilized ß-glycosidase for the development of new functional foods particularly suitable to the alleviation of lactose intolerance.


Assuntos
Glicosídeo Hidrolases/metabolismo , Lactose/metabolismo , Leite/química , Temperatura , Animais , Bovinos , Quitosana/química , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Sulfolobus/enzimologia
6.
Molecules ; 24(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591638

RESUMO

A series of chemical and biochemical parameters of edible hemp resources (seeds, oil, and flour) from the monoecious EU registered hemp genotype Fedora, was determined, including fatty acid profile, phytosterol composition, total phenolics, antioxidant activity, macro- and micro-elements. The fatty acid ω-3/ω-6 approached the nutritionally optimal 3/1 ratio. ß-sitosterol and other phytosterols sterols dominated the unsaponifiable fraction. Hemp seeds, flour, and oil contained 767 ± 41, 744 ± 29, and 21 ± 5 mg GAE kg-1 total polyphenols, respectively. The antioxidant potential of Fedora flour and seeds, evaluated through the DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay, was higher than that of oil. K and Mg were the most abundant macro-elements, particularly in flour, while the concentration of trace elements was Fe > Cu > Ni > Mn. The presence of an array of bioactive compound candidate Fedora products as health-promoting food matrices. The ATR-FTIR spectra of hemp-derived products indicated the proximate composition of macro-nutrients.


Assuntos
Cannabis/química , Farinha/análise , Óleos de Plantas/química , Plantas Comestíveis/química , Sementes/química , Antioxidantes/análise , Minerais/análise , Polifenóis/análise , Saponinas/análise , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Extremophiles ; 21(5): 933-945, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28803263

RESUMO

Haloterrigena turkmenica was able to synthesize carotenoids when grown in halobacteria medium. These molecules have antioxidant properties and find application in food, cosmetic, and pharmaceutical fields. The carotenoids were extracted with methanol, separated by RP-HPLC, and identified by mass spectrometry and UV/Vis spectra analyses. The C50 carotenoids were the main pigments, and C30, C40, and C51 carotenoids were also detected. Seven geometric isomers were distinguished for bacterioruberin, monoanhydrobacterioruberin, and bisanhydrobacterioruberin. The assignment to a specific isomer was tentatively attempted through the analysis of the corresponding UV/Vis spectrum, the intensity of the cis peak, and its spectral fine structure. Lycopene, phytoene, and lycopersene were among the minor carotenoids further identified. The extract displayed antioxidant power higher than alpha-tocopherol, butylhydroxytoluene, and ascorbic acid used as reference compounds. Our studies identified for the first time seven geometric isomers of bacterioruberin derivatives and 30 carotenoids in a haloarchaeon.


Assuntos
Antioxidantes/química , Carotenoides/química , Halobacteriaceae/química , Antioxidantes/farmacologia , Carotenoides/farmacologia , Ambientes Extremos , Oxirredução , Tolerância ao Sal
8.
Appl Microbiol Biotechnol ; 100(2): 613-23, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26403921

RESUMO

We have isolated a novel exopolysaccharide (EPS) produced by the extreme halophilic archaeon Haloterrigena turkmenica. Some features, remarkable from an industrial point of view, such as emulsifying and antioxidant properties, were investigated. H. turkmenica excreted 20.68 mg of EPS per 100 ml of culture medium when grown in usual medium supplemented with glucose. The microorganism excreted the biopolymer mainly in the middle exponential growth phase and reached the maximal production in the stationary phase. Analyses by anion exchange chromatography and SEC-TDA Viscotek indicated that the EPS was composed of two main fractions of 801.7 and 206.0 kDa. It was a sulfated heteropolysaccharide containing glucose, galactose, glucosamine, galactosamine, and glucuronic acid. Studies performed utilizing the mixture of EPS anionic fractions showed that the biopolymer had emulsifying activity towards vegetable oils comparable or superior to that exhibited by the controls, moderate antioxidant power when tested with 2,2'-diphenyl-1-picrylhydrazyl (DPPH(·)), and moisture-retention ability higher than hyaluronic acid (HA). The EPS from H. turkmenica is the first exopolysaccharide produced by an archaea to be characterized in terms of properties that can have potential biotechnological applications.


Assuntos
Halobacteriales/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/química , Antioxidantes/química , Antioxidantes/metabolismo , Biotecnologia , Compostos de Bifenilo/farmacologia , Meios de Cultura/química , Emulsões , Galactose/metabolismo , Glucose/metabolismo , Halobacteriales/química , Ácido Hialurônico/metabolismo , Picratos/farmacologia
9.
Molecules ; 21(3): 319, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-27005599

RESUMO

Many studies have evidenced that the phenolic components from flaxseed (FS) oil have potential health benefits. The effect of the phenolic extract from FS oil has been evaluated on two human breast cancer cell lines, MCF7 and MDA-MB231, and on the human non-cancerous breast cell line, MCF10A, by SRB assay, cellular death, cell cycle, cell signaling, lipid peroxidation and expression of some key genes. We have evidenced that the extract shows anti-proliferative activity on MCF7 cells by inducing cellular apoptosis, increase of the percentage of cells in G0/G1 phase and of lipid peroxidation, activation of the H2AX signaling pathway, and upregulation of a six gene signature. On the other hand, on the MDA-MB2131 cells we verified only an anti-proliferative activity, a weak lipid peroxidation, the activation of the PI3K signaling pathway and an up-regulation of four genes. Overall these data suggest that the extract has both cytotoxic and pro-oxidant effects only on MCF7 cells, and can act as a metabolic probe, inducing differences in the gene expression. For this purpose, we have performed an interactomic analysis, highlighting the existing associations. From this approach, we show that the phenotypic difference between the two cell lines can be explained through their differential response to the phenolic extract.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Óleo de Semente do Linho/administração & dosagem , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histonas/biossíntese , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
J Chem Technol Biotechnol ; 90(3): 573-581, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25866429

RESUMO

BACKGROUND: Cellulases and xylanases are the key enzymes involved in the conversion of lignocelluloses into fermentable sugars. Western Ghat region (India) has been recognized as an active hot spot for the isolation of new microorganisms. The aim of this work was to isolate new microorganisms producing cellulases and xylanases to be applied in brewer's spent grain saccharification. RESULTS: 93 microorganisms were isolated from Western Ghat and screened for the production of cellulase and xylanase activities. Fourteen cellulolytic and seven xylanolytic microorganisms were further screened in liquid culture. Particular attention was focused on the new isolate Bacillus amyloliquefaciens XR44A, producing xylanase activity up to 10.5 U mL-1. A novel endo-1,4-beta xylanase was identified combining zymography and proteomics and recognized as the main enzyme responsible for B. amyloliquefaciens XR44A xylanase activity. The new xylanase activity was partially characterized and its application in saccharification of brewer's spent grain, pretreated by aqueous ammonia soaking, was investigated. CONCLUSION: The culture supernatant of B. amyloliquefaciens XR44A with xylanase activity allowed a recovery of around 43% xylose during brewer's spent grain saccharification, similar to the value obtained with a commercial xylanase from Trichoderma viride, and a maximum arabinose yield of 92%, around 2-fold higher than that achieved with the commercial xylanase. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

11.
World J Microbiol Biotechnol ; 31(4): 633-48, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25687227

RESUMO

An extracellular thermo-alkali-stable and cellulase-free xylanase from Geobacillus thermodenitrificans A333 was purified to homogeneity by ion exchange and size exclusion chromatography. Its molecular mass was 44 kDa as estimated in native and denaturing conditions by gel filtration and SDS-PAGE analysis, respectively. The xylanase (GtXyn) exhibited maximum activity at 70 °C and pH 7.5. It was stable over broad ranges of temperature and pH retaining 88 % of activity at 60 °C and up to 97 % in the pH range 7.5-10.0 after 24 h. Moreover, the enzyme was active up to 3.0 M sodium chloride concentration, exhibiting at that value 70 % residual activity after 1 h. The presence of other metal ions did not affect the activity with the sole exceptions of K(+) that showed a stimulating effect, and Fe(2+), Co(2+) and Hg(2+), which inhibited the enzyme. The xylanase was activated by non-ionic surfactants and was stable in organic solvents remaining fully active over 24 h of incubation in 40 % ethanol at 25 °C. Furthermore, the enzyme was resistant to most of the neutral and alkaline proteases tested. The enzyme was active only on xylan, showing no marked preference towards xylans from different origins. The hydrolysis of beechwood xylan and agriculture-based biomass materials yielded xylooligosaccharides with a polymerization degree ranging from 2 to 6 units and xylobiose and xylotriose as main products. These properties indicate G. thermodenitrificans A333 xylanase as a promising candidate for several biotechnological applications, such as xylooligosaccharides preparation.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Glucuronatos/metabolismo , Oligossacarídeos/metabolismo , Xilosidases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Estabilidade Enzimática , Geobacillus/química , Geobacillus/genética , Concentração de Íons de Hidrogênio , Peso Molecular , Especificidade por Substrato , Temperatura , Xilosidases/genética , Xilosidases/isolamento & purificação , Xilosidases/metabolismo
12.
Biochim Biophys Acta ; 1834(1): 149-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23036908

RESUMO

The transpeptidation activity of γ-glutamyltranspeptidase from Geobacillus thermodenitrificans (GthGT) is negligible and the enzyme is highly thermostable. Here we have examined the effect of concentrated NaCl solutions on structure, stability, dynamics and enzymatic activity of GthGT. The protein exhibited hydrolytic activity over a broad range of NaCl concentrations. Even at 4.0M NaCl, GthGT retained more than 90% of the initial activity and showed unaltered fluorescence emission, secondary structure and acrylamide quenching on tryptophan fluorescence. Furthermore, at 2.8M and 4.0M NaCl the temperature-induced unfolding profiles are dramatically changed with large (>20°C) positive shifts in the denaturation temperature. These features make GthGT an ideal system to be used in industrial processes that require high temperatures and high-salt environments. A general explanation of the NaCl effect by means of a statistical thermodynamic model is also provided, together with an analysis of residue distribution between protein surface and interior in 15 non-redundant families of halophilic and non-halophilic proteins. The results are in line with a comparative sequence and structural analysis between halophilic and non-halophilic γ-glutamyltranspeptidases which revealed that a major role in halotolerance should be played by solvent exposed negatively charged residues.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Cloreto de Sódio/química , gama-Glutamiltransferase/química , Estabilidade Enzimática/fisiologia , Estrutura Secundária de Proteína
13.
Fungal Genet Biol ; 72: 162-167, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25046861

RESUMO

The fungal arabinofuranosidase from Pleurotus ostreatus PoAbf recombinantly expressed in Pichia pastoris rPoAbf and its evolved variant rPoAbf F435Y/Y446F were tested for their effectiveness to enhance the enzymatic saccharification of three lignocellulosic biomasses, namely Arundo donax, corn cobs and brewer's spent grains (BSG), after chemical or chemical-physical pretreatment. All the raw materials were subjected to an alkaline pretreatment by soaking in aqueous ammonia solution whilst the biomass from A. donax was also pretreated by steam explosion. The capability of the wild-type and mutant rPoAbf to increase the fermentable sugars recovery was assessed by using these enzymes in combination with different (hemi)cellulolytic activities. These enzymatic mixtures were either entirely of commercial origin or contained the cellulase from Streptomyces sp. G12 CelStrep recombinantly expressed in Escherichia coli in substitution to the commercial counterparts. The addition of the arabinofuranosidases from P. ostreatus improved the hydrolytic efficiency of the commercial enzymatic cocktails on all the pretreated biomasses. The best results were obtained using the rPoAbf evolved variant and are represented by increases of the xylose recovery up to 56.4%. These data clearly highlight the important role of the accessory hemicellulolytic activities to optimize the xylan bioconversion yields.


Assuntos
Glicosídeo Hidrolases/metabolismo , Lignina/metabolismo , Pleurotus/enzimologia , Biomassa , Clonagem Molecular , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Glicosídeo Hidrolases/genética , Hidrólise , Pichia/enzimologia , Pichia/genética , Pleurotus/genética , Pleurotus/metabolismo , Streptomyces/enzimologia , Streptomyces/genética
14.
Biochim Biophys Acta ; 1824(4): 571-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22322192

RESUMO

γ-glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are generally synthesized as precursor proteins, which undergo an intra-molecular autocatalytic cleavage yielding a large and a small subunit. In this study, circular dichroism and intrinsic fluorescence measurements have been used to investigate the structural features and the temperature- and guanidinium hydrochloride (GdnHCl)-induced unfolding of the mature form of the γ-GT from Geobacillus thermodenitrificans (GthGT) and that of its T353A mutant, which represents a mimic of the precursor protein. Data indicate that a) the mutant and the mature GthGT have a different secondary structure content and a slightly different exposure of hydrophobic regions, b) the thermal unfolding processes of both GthGT forms occur through a three-state model, characterized by a stable intermediate species, whereas chemical denaturations proceed through a single transition, c) both GthGT forms exhibit remarkable stability against temperature, but they do not display a strong resistance to the denaturing action of GdnHCl. These findings suggest that electrostatic interactions significantly contribute to the protein stability and that both the precursor and the mature form of GthGT assume compact and stable conformations to resist to the extreme temperatures where G. thermodenidrificans lives. Owing to its thermostability and unique catalytic properties, GthGT is an excellent candidate to be used as a glutaminase in food industry.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , gama-Glutamiltransferase/química , Substituição de Aminoácidos , Naftalenossulfonato de Anilina/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Estabilidade Enzimática , Corantes Fluorescentes/química , Guanidina/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Desdobramento de Proteína , Espectrometria de Fluorescência , Temperatura de Transição , gama-Glutamiltransferase/genética
15.
Antioxidants (Basel) ; 12(10)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37891919

RESUMO

Herein, we report on the production, characterization, and antioxidant power assessment of carotenoids from the haloarchaeon Halorhabdus utahensis. It was grown at 37 °C and 180 rpm agitation in halobacteria medium supplemented with glucose, fructose, and xylose, each at concentrations of 0.2%, 1%, and 2%, and the carotenoid yield and composition were investigated. The microorganism produced the carotenoids under all the conditions tested, and their amount followed the order glucose < xylose < fructose. The highest yield was achieved in 2% fructose growth medium with 550.60 ± 7.91 µg/g dry cell and 2428.15 ± 49.33 µg/L. Separation and identification of the carotenoids were performed by RP-HPLC and HPLC/APCI-ITMSn. Bacterioruberin was the main carotenoid detected and accounted for 60.6%, 56.4%, and 58.9% in 2% glucose, 1% xylose, and 2% fructose extracts, respectively. Several geometric isomers of bacterioruberin were distinguished, and representatives of monoanhydrobacterioruberin, and bisanhydrobacterioruberin were also detected. The assignment to cis-isomers was attempted through analysis of the UV/Vis spectra, intensity of cis peaks, and spectral fine structures. The extracts exhibited superoxide scavenging activity higher than butylhydroxytoluene, ascorbic acid, and Trolox, selected as antioxidant references. The anti-hyaluronidase capacity was investigated, and the 2% fructose extract showed the highest activity reaching 90% enzyme inhibition with 1.5 µg. The overall data confirm that Hrd. utahensis can be regarded as an interesting source of antioxidants that can find applications in the food and cosmetic sectors.

16.
Extremophiles ; 15(2): 259-70, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21298394

RESUMO

γ-Glutamyltranspeptidase (γ-GT) is an ubiquitous enzyme that catalyzes the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. γ-GTs from extremophiles, bacteria adapted to live in hostile environments, were selected as model systems to study the molecular underpinnings of their adaptation to extreme conditions and to find out special properties of potential biotechnological interest. Here, we report the cloning, expression and purification of two members of γ-GT family from two different extremophilic species, Thermus thermophilus (TtGT) and Deinococcus radiodurans (DrGT); the first is an aerobic eubacterium, growing at high temperatures (50-82°C), the second is a polyextremophile, as it tolerates radiations, cold, dehydration, vacuum, and acid. TtGT and DrGT were both synthesized as precursor proteins of 59-60 kDa, undergoing an intramolecular auto-cleavage to yield two subunits of 40 and 19-20 kDa, respectively. However, like the γ-GT from Geobacillus thermodenitrificans, but differently from the other characterized bacterial and eukaryotic γ-GTs, the two new extremophilic enzymes displayed γ-glutamyl hydrolase, but not transpeptidase activity in the 37-50°C temperature range, pH 8.0. The comparison of sequences and structural models of these two proteins with experimental-determined structures of other known mesophilic γ-GTs suggests that the extremophilic members of this protein family have found a common strategy to adapt to different hostile environments. Moreover, a phylogenetic analysis suggests that γ-GTs displaying only γ-glutamyl hydrolase activity could represent the progenitors of the bacterial and eukaryotic counterparts.


Assuntos
Deinococcus/enzimologia , Thermus thermophilus/enzimologia , gama-Glutamiltransferase/genética , Sequência de Aminoácidos , Clonagem Molecular , Glutamina/química , Glutationa/química , Concentração de Íons de Hidrogênio , Hidrólise , Dados de Sequência Molecular , Filogenia , Plasmídeos/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
17.
Foods ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287134

RESUMO

Fresh figs are very sensitive to microbial spoilage, even in cold storage conditions. Thus, fresh figs are high perishable products during postharvest with microbiological decay that induces an unpleasant taste and smell due to rot, and suitable conservation methods must therefore be applied. The fruit usually is consumed fresh locally, dried, or preserved longer term in other transformed forms. A sustainable approach to extend the shelf-life of figs can be constituted by application of an edible coating able to maintain the quality of the fruit during storage. A comparison between fresh figs in a commercial preservation system, with the figs preserved in an edible coating, and an active edible coating to preserve their quality characteristics was carried out. The coating efficacy was enhanced with the addition of pomegranate peel extract at two different concentrations. The inclusion of a component with high antioxidant activity in an edible coating proved to be an excellent method for preserving the quality of this highly perishable fruit. The application of natural products, obtained from renewable sources, represents a simple and economic strategy, but also a tool capable of preserving the quality of the fruit during the postharvest storage, which is often consumed in production areas due to shelf-life problems.

18.
Biochim Biophys Acta ; 1784(2): 292-301, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18068682

RESUMO

The thermoacidophilic bacterium Alicyclobacillus acidocaldarius is a rich source of glycoside hydrolases enabling its growth on several di- and polysaccharides. We report here the purification and the characterization of a beta-galactosidase from this source, the cloning of its gene, and the expression and the characterization of the recombinant enzyme (Aabeta-gal). The enzyme was purified 46-fold from A. acidocaldarius extracts; the gene for Aabeta-gal encoded a new member of the glycoside hydrolase family 42 (GH42) and it is flanked by a putative AraC/XylS regulator, however, the two genes were transcribed independently. The recombinant Aabeta-gal was characterized in detail revealing that it is optimally active and stable at 65 degrees C. Aabeta-gal is very specific for glycosides with an axial C4-OH at their non-reducing end, with kcat/KM values of 484, 186, and 332 s(-1) mM(-1) for 2-nitrophenyl-beta-d-galactoside, -fucoside, and 4-nitrophenyl-alpha-l-arabinoside, respectively. Finally, the characterization of the site-directed mutants Glu157Gly and Glu313Gly confirmed the latter as the nucleophile of the reaction and gave experimental evidence, for the first time in GH42, of the role of Glu157 as the acid/base of the catalyzed reaction.


Assuntos
Bactérias/enzimologia , Temperatura , beta-Galactosidase/isolamento & purificação , beta-Galactosidase/metabolismo , Sequência de Aminoácidos , Fator de Transcrição AraC/genética , Sítios de Ligação , Clonagem Molecular , Sequência Conservada , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Mutação/genética , Alinhamento de Sequência , Transcrição Gênica/genética , beta-Galactosidase/química , beta-Galactosidase/classificação
19.
Int J Biol Macromol ; 122: 1224-1234, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219517

RESUMO

An intracellular ß-xylosidase (AbXyl), from the thermoalkaline Anoxybacillus sp. 3M, was purified and characterized. The homodimeric enzyme (140 kDa) was optimally active at 65 °C and pH 5.5, exhibited half life of 10 h at 60 °C, 78 and 88% residual activity after 24 h, at pH 4.5 and 8.0, respectively. Fe2+, Cu2+, Al3+, Ag+ and Hg2+ inhibited the enzyme; the activity was moderately stimulated by SDS and not influenced by ß-mercaptoethanol. In the presence of p-nitrophenyl-ß-d-xylopyranoside, AbXyl exhibited Km of 0.19 mM, Kcat of 453.29 s-1, Kcat Km-1 of 2322 s-1 mM and was moderately influenced by xylose (Ki 21.25 mM). The enzyme hydrolyzed xylo-oligomers into xylose and catalyzed transxylosilation reactions also in presence of alcohols as acceptors, producing xylo-oligosaccharides and alkyl-xylosides. Finally AbXyl was applied towards a statistically optimized process of brewery's spent grain bioconversion, highlighting the important role of this biocatalyst in reaching high yields of fermentable sugars.


Assuntos
Agricultura , Anoxybacillus/enzimologia , Carboidratos/química , Resíduos Industriais , Xilosidases/metabolismo , Anoxybacillus/citologia , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Hidrólise , Espaço Intracelular/enzimologia , Especificidade por Substrato , Temperatura , Xilosidases/antagonistas & inibidores
20.
Appl Environ Microbiol ; 74(13): 3949-58, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18456852

RESUMO

The gene encoding a novel alcohol dehydrogenase (ADH) that belongs to the short-chain dehydrogenase/reductase (SDR) superfamily was identified in the extremely thermophilic, halotolerant gram-negative eubacterium Thermus thermophilus HB27. The T. thermophilus ADH gene (adh(Tt)) was heterologously overexpressed in Escherichia coli, and the protein (ADH(Tt)) was purified to homogeneity and characterized. ADH(Tt) is a tetrameric enzyme consisting of identical 26,961-Da subunits composed of 256 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to approximately 73 degrees C and a 30-min half-inactivation temperature of approximately 90 degrees C, as well as good tolerance to common organic solvents. ADH(Tt) has a strict requirement for NAD(H) as the coenzyme, a preference for reduction of aromatic ketones and alpha-keto esters, and poor activity on aromatic alcohols and aldehydes. This thermophilic enzyme catalyzes the following reactions with Prelog specificity: the reduction of acetophenone, 2,2,2-trifluoroacetophenone, alpha-tetralone, and alpha-methyl and alpha-ethyl benzoylformates to (S)-(-)-1-phenylethanol (>99% enantiomeric excess [ee]), (R)-alpha-(trifluoromethyl)benzyl alcohol (93% ee), (S)-alpha-tetralol (>99% ee), methyl (R)-(-)-mandelate (92% ee), and ethyl (R)-(-)-mandelate (95% ee), respectively, by way of an efficient in situ NADH-recycling system involving 2-propanol and a second thermophilic ADH. This study further supports the critical role of the D37 residue in discriminating NAD(H) from NADP(H) in members of the SDR superfamily.


Assuntos
Álcool Desidrogenase/isolamento & purificação , Álcool Desidrogenase/metabolismo , Thermus thermophilus/enzimologia , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Sequência de Aminoácidos , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Temperatura Alta , Cinética , Dados de Sequência Molecular , NAD/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Estereoisomerismo , Especificidade por Substrato , Thermus thermophilus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA