Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(3): 594-613, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
2.
Brain ; 147(6): 1967-1974, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478578

RESUMO

Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Humanos , Doença de Leigh/genética , Atrofia Óptica Hereditária de Leber/genética , Masculino , Feminino , Adulto , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Criança , Adolescente , NADH Desidrogenase/genética , Mutação , Adulto Jovem , Sequenciamento do Exoma , Pré-Escolar
3.
Eur J Neurol ; 31(9): e16344, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38757769

RESUMO

Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease characterized by visual loss, and rarely associated with extraocular manifestations including multiple sclerosis-like lesions. The association of LHON and neuromyelitis optica spectrum disorders has rarely been reported. Here is reported a case of glial fibrillary acidic protein astrocytopathy presenting with area postrema syndrome in a patient with previously diagnosed recessive LHON due to mutations in the nuclear gene DNAJC30. This case emphasizes the necessity of extensive investigations for other treatable conditions in patients with LHON and otherwise unexplained extraocular involvement and the possibility that also visual symptoms can respond to immune therapy.


Assuntos
Proteína Glial Fibrilar Ácida , Mutação , Atrofia Óptica Hereditária de Leber , Humanos , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/complicações , Proteína Glial Fibrilar Ácida/genética , Astrócitos/patologia , Astrócitos/metabolismo , Masculino , Proteínas de Choque Térmico HSP40/genética , Adulto , Feminino
4.
J Med Genet ; 61(1): 93-101, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37734847

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder characterised by complex I defect leading to sudden degeneration of retinal ganglion cells. Although typically associated with pathogenic variants in mitochondrial DNA, LHON was recently described in patients carrying biallelic variants in nuclear genes DNAJC30, NDUFS2 and MCAT. MCAT is part of mitochondrial fatty acid synthesis (mtFAS), as also MECR, the mitochondrial trans-2-enoyl-CoA reductase. MECR mutations lead to a recessive childhood-onset syndromic disorder with dystonia, optic atrophy and basal ganglia abnormalities. METHODS: We studied through whole exome sequencing two sisters affected by sudden and painless visual loss at young age, with partial recovery and persistent central scotoma. We modelled the candidate variant in yeast and studied mitochondrial dysfunction in yeast and fibroblasts. We tested protein lipoylation and cell response to oxidative stress in yeast. RESULTS: Both sisters carried a homozygous pathogenic variant in MECR (p.Arg258Trp). In yeast, the MECR-R258W mutant showed an impaired oxidative growth, 30% reduction in oxygen consumption rate and 80% decrease in protein levels, pointing to structure destabilisation. Fibroblasts confirmed the reduced amount of MECR protein, but failed to reproduce the OXPHOS defect. Respiratory complexes assembly was normal. Finally, the yeast mutant lacked lipoylation of key metabolic enzymes and was more sensitive to H2O2 treatment. Lipoic Acid supplementation partially rescued the growth defect. CONCLUSION: We report the first family with homozygous MECR variant causing an LHON-like optic neuropathy, which pairs the recent MCAT findings, reinforcing the impairment of mtFAS as novel pathogenic mechanism in LHON.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Hereditária de Leber , Criança , Humanos , DNA Mitocondrial/genética , Peróxido de Hidrogênio/metabolismo , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Saccharomyces cerevisiae/genética
5.
Nucleic Acids Res ; 50(15): 8749-8766, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35947649

RESUMO

The in vivo role for RNase H1 in mammalian mitochondria has been much debated. Loss of RNase H1 is embryonic lethal and to further study its role in mtDNA expression we characterized a conditional knockout of Rnaseh1 in mouse heart. We report that RNase H1 is essential for processing of RNA primers to allow site-specific initiation of mtDNA replication. Without RNase H1, the RNA:DNA hybrids at the replication origins are not processed and mtDNA replication is initiated at non-canonical sites and becomes impaired. Importantly, RNase H1 is also needed for replication completion and in its absence linear deleted mtDNA molecules extending between the two origins of mtDNA replication are formed accompanied by mtDNA depletion. The steady-state levels of mitochondrial transcripts follow the levels of mtDNA, and RNA processing is not altered in the absence of RNase H1. Finally, we report the first patient with a homozygous pathogenic mutation in the hybrid-binding domain of RNase H1 causing impaired mtDNA replication. In contrast to catalytically inactive variants of RNase H1, this mutant version has enhanced enzyme activity but shows impaired primer formation. This finding shows that the RNase H1 activity must be strictly controlled to allow proper regulation of mtDNA replication.


Assuntos
DNA Mitocondrial , Ribonuclease H , Camundongos , Animais , DNA Mitocondrial/química , Ribonuclease H/genética , Ribonuclease H/metabolismo , RNA/química , Replicação do DNA/genética , Mitocôndrias/genética , Mamíferos/genética
6.
N Engl J Med ; 382(18): 1687-1695, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32286748

RESUMO

BACKGROUND: Nonophthalmologist physicians do not confidently perform direct ophthalmoscopy. The use of artificial intelligence to detect papilledema and other optic-disk abnormalities from fundus photographs has not been well studied. METHODS: We trained, validated, and externally tested a deep-learning system to classify optic disks as being normal or having papilledema or other abnormalities from 15,846 retrospectively collected ocular fundus photographs that had been obtained with pharmacologic pupillary dilation and various digital cameras in persons from multiple ethnic populations. Of these photographs, 14,341 from 19 sites in 11 countries were used for training and validation, and 1505 photographs from 5 other sites were used for external testing. Performance at classifying the optic-disk appearance was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity, and specificity, as compared with a reference standard of clinical diagnoses by neuro-ophthalmologists. RESULTS: The training and validation data sets from 6779 patients included 14,341 photographs: 9156 of normal disks, 2148 of disks with papilledema, and 3037 of disks with other abnormalities. The percentage classified as being normal ranged across sites from 9.8 to 100%; the percentage classified as having papilledema ranged across sites from zero to 59.5%. In the validation set, the system discriminated disks with papilledema from normal disks and disks with nonpapilledema abnormalities with an AUC of 0.99 (95% confidence interval [CI], 0.98 to 0.99) and normal from abnormal disks with an AUC of 0.99 (95% CI, 0.99 to 0.99). In the external-testing data set of 1505 photographs, the system had an AUC for the detection of papilledema of 0.96 (95% CI, 0.95 to 0.97), a sensitivity of 96.4% (95% CI, 93.9 to 98.3), and a specificity of 84.7% (95% CI, 82.3 to 87.1). CONCLUSIONS: A deep-learning system using fundus photographs with pharmacologically dilated pupils differentiated among optic disks with papilledema, normal disks, and disks with nonpapilledema abnormalities. (Funded by the Singapore National Medical Research Council and the SingHealth Duke-NUS Ophthalmology and Visual Sciences Academic Clinical Program.).


Assuntos
Aprendizado Profundo , Fundo de Olho , Redes Neurais de Computação , Oftalmoscopia/métodos , Papiledema/diagnóstico , Fotografação , Retina/diagnóstico por imagem , Algoritmos , Área Sob a Curva , Conjuntos de Dados como Assunto , Diagnóstico Diferencial , Humanos , Valor Preditivo dos Testes , Curva ROC , Retina/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade
7.
Brain ; 145(5): 1624-1631, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35148383

RESUMO

The recent description of biallelic DNAJC30 variants in Leber hereditary optic neuropathy (LHON) and Leigh syndrome challenged the longstanding assumption for LHON to be exclusively maternally inherited and broadened the genetic spectrum of Leigh syndrome, the most frequent paediatric mitochondrial disease. Herein, we characterize 28 so far unreported individuals from 26 families carrying a homozygous DNAJC30 p.Tyr51Cys founder variant, 24 manifesting with LHON, two manifesting with Leigh syndrome, and two remaining asymptomatic. This collection of unreported variant carriers confirms sex-dependent incomplete penetrance of the homozygous variant given a significant male predominance of disease and the report of asymptomatic homozygous variant carriers. The autosomal recessive LHON patients demonstrate an earlier age of disease onset and a higher rate of idebenone-treated and spontaneous recovery of vision in comparison to reported figures for maternally inherited disease. Moreover, the report of two additional patients with childhood- or adult-onset Leigh syndrome further evidences the association of DNAJC30 with Leigh syndrome, previously only reported in a single childhood-onset case.


Assuntos
Doença de Leigh , Atrofia Óptica Hereditária de Leber , Adulto , Criança , DNA Mitocondrial/genética , Feminino , Humanos , Doença de Leigh/genética , Masculino , Mutação/genética , Atrofias Ópticas Hereditárias , Atrofia Óptica Hereditária de Leber/genética
8.
Hum Mol Genet ; 29(11): 1864-1881, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-31984424

RESUMO

ADCA-DN and HSN-IE are rare neurodegenerative syndromes caused by dominant mutations in the replication foci targeting sequence (RFTS) of the DNA methyltransferase 1 (DNMT1) gene. Both phenotypes resemble mitochondrial disorders, and mitochondrial dysfunction was first observed in ADCA-DN. To explore mitochondrial involvement, we studied the effects of DNMT1 mutations in fibroblasts from four ADCA-DN and two HSN-IE patients. We documented impaired activity of purified DNMT1 mutant proteins, which in fibroblasts results in increased DNMT1 amount. We demonstrated that DNMT1 is not localized within mitochondria, but it is associated with the mitochondrial outer membrane. Concordantly, mitochondrial DNA failed to show meaningful CpG methylation. Strikingly, we found activated mitobiogenesis and OXPHOS with significant increase of H2O2, sharply contrasting with a reduced ATP content. Metabolomics profiling of mutant cells highlighted purine, arginine/urea cycle and glutamate metabolisms as the most consistently altered pathways, similar to primary mitochondrial diseases. The most severe mutations showed activation of energy shortage AMPK-dependent sensing, leading to mTORC1 inhibition. We propose that DNMT1 RFTS mutations deregulate metabolism lowering ATP levels, as a result of increased purine catabolism and urea cycle pathways. This is associated with a paradoxical mitochondrial hyper-function and increased oxidative stress, possibly resulting in neurodegeneration in non-dividing cells.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Predisposição Genética para Doença , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Degeneração Neural/genética , Ataxias Espinocerebelares/genética , Metilação de DNA/genética , Surdez/genética , Surdez/fisiopatologia , Feminino , Fibroblastos/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/fisiopatologia , Humanos , Masculino , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação/genética , Narcolepsia/genética , Narcolepsia/fisiopatologia , Degeneração Neural/fisiopatologia , Fosforilação Oxidativa , Fenótipo , Processamento de Proteína Pós-Traducional/genética , Ataxias Espinocerebelares/fisiopatologia
9.
Mol Med ; 28(1): 90, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922766

RESUMO

BACKGROUND: Myoclonus, Epilepsy and Ragged-Red-Fibers (MERRF) is a mitochondrial encephalomyopathy due to heteroplasmic mutations in mitochondrial DNA (mtDNA) most frequently affecting the tRNALys gene at position m.8344A > G. Defective tRNALys severely impairs mitochondrial protein synthesis and respiratory chain when a high percentage of mutant heteroplasmy crosses the threshold for full-blown clinical phenotype. Therapy is currently limited to symptomatic management of myoclonic epilepsy, and supportive measures to counteract muscle weakness with co-factors/supplements. METHODS: We tested two therapeutic strategies to rescue mitochondrial function in cybrids and fibroblasts carrying different loads of the m.8344A > G mutation. The first strategy was aimed at inducing mitochondrial biogenesis directly, over-expressing the master regulator PGC-1α, or indirectly, through the treatment with nicotinic acid, a NAD+ precursor. The second was aimed at stimulating the removal of damaged mitochondria through prolonged rapamycin treatment. RESULTS: The first approach slightly increased mitochondrial protein expression and respiration in the wild type and intermediate-mutation load cells, but was ineffective in high-mutation load cell lines. This suggests that induction of mitochondrial biogenesis may not be sufficient to rescue mitochondrial dysfunction in MERRF cells with high-mutation load. The second approach, when administered chronically (4 weeks), induced a slight increase of mitochondrial respiration in fibroblasts with high-mutation load, and a significant improvement in fibroblasts with intermediate-mutation load, rescuing completely the bioenergetics defect. This effect was mediated by increased mitochondrial biogenesis, possibly related to the rapamycin-induced inhibition of the Mechanistic Target of Rapamycin Complex 1 (mTORC1) and the consequent activation of the Transcription Factor EB (TFEB). CONCLUSIONS: Overall, our results point to rapamycin-based therapy as a promising therapeutic option for MERRF.


Assuntos
Síndrome MERRF , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Humanos , Síndrome MERRF/genética , Síndrome MERRF/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Sirolimo/metabolismo , Sirolimo/farmacologia
10.
Mol Genet Metab ; 135(1): 72-81, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34916127

RESUMO

INTRODUCTION: The mitochondrial DNA (mtDNA) m.3243A > G mutation in the MT-TL1 gene results in a multi-systemic disease, that is commonly associated with neurodegenerative changes in the brain. METHODS: Seventeen patients harboring the m3243A > G mutation were enrolled (age 43.1 ± 11.4 years, 10 M/7F). A panel of plasma biomarkers including lactate acid, alanine, L-arginine, fibroblast growth factor 21 (FGF-21), growth/differentiation factor 15 (GDF-15) and circulating cell free -mtDNA (ccf-mtDNA), as well as blood, urine and muscle mtDNA heteroplasmy were evaluated. Patients also underwent a brain standardized MR protocol that included volumetric T1-weighted images and diffusion-weighted MRI. Twenty sex- and age-matched healthy controls were included. Voxel-wise analysis was performed on T1-weighted and diffusion imaging, respectively with VBM (voxel-based morphometry) and TBSS (Tract-based Spatial Statistics). Ventricular lactate was also evaluated by 1H-MR spectroscopy. RESULTS: A widespread cortical gray matter (GM) loss was observed, more severe (p < 0.001) in the bilateral calcarine, insular, frontal and parietal cortex, along with infratentorial cerebellar cortex. High urine mtDNA mutation load, high levels of plasma lactate and alanine, low levels of plasma arginine, high levels of serum FGF-21 and ventricular lactate accumulation significantly (p < 0.05) correlated with the reduced brain GM density. Widespread microstructural alterations were highlighted in the white matter, significantly (p < 0.05) correlated with plasma alanine and arginine levels, with mtDNA mutation load in urine, with high level of serum GDF-15 and with high content of plasma ccf-mtDNA. CONCLUSIONS: Our results suggest that the synergy of two pathogenic mechanisms, mtDNA-related mitochondrial respiratory deficiency and defective nitric oxide metabolism, contributes to the brain neurodegeneration in m.3243A > G patients.


Assuntos
Substância Branca , Adulto , Biomarcadores , Encéfalo/patologia , DNA Mitocondrial/genética , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Mutação , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
11.
Mov Disord ; 37(1): 205-210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34617633

RESUMO

BACKGROUND: Melanopsin retinal ganglion cell (mRGC)-mediated pupillary light reflex (PLR) abnormalities have been documented in several neurodegenerative disorders including Parkinson's disease. Overall, isolated rapid eye movement (REM) sleep behavior disorder (iRBD) represents the strongest prodromal risk factor for impending α-synucleinopathies. OBJECTIVES: To quantitatively compare PLR and mRGC-mediated contribution to PLR in 16 iRBD patients and 16 healthy controls. METHODS: iRBD and controls underwent extensive neuro-ophthalmological evaluation and chromatic pupillometry. In iRBD, PLR metrics were correlated with clinical variables and with additional biomarkers including REM atonia index (RAI), DaTscan, and presence of phosphorylated-α-synuclein (p-α-syn) deposition in skin biopsy. RESULTS: We documented higher baseline pupil diameter and decreased rod-transient PLR amplitude in iRBD patients compared to controls. PLR rod-contribution correlated with RAI. Moreover, only iRBD patients with evidence of p-α-syn deposition at skin biopsy showed reduced PLR amplitude compared to controls. CONCLUSION: The observed PLR abnormalities in iRBD might be considered as potential biomarkers for the risk stratification of phenoconversion of the disease. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , Doença de Parkinson/complicações , Transtorno do Comportamento do Sono REM/complicações
12.
Mov Disord ; 37(9): 1938-1943, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35792653

RESUMO

BACKGROUND: Parkinsonian features have been described in patients harboring variants in nuclear genes encoding for proteins involved in mitochondrial DNA maintenance, such as TWNK. OBJECTIVES: The aim was to screen for TWNK variants in an Italian cohort of Parkinson's disease (PD) patients and to assess the occurrence of parkinsonism in patients presenting with TWNK-related autosomal dominant progressive external ophthalmoplegia (TWNK-adPEO). METHODS: Genomic DNA of 263 consecutively collected PD patients who underwent diagnostic genetic testing was analyzed with a targeted custom gene panel including TWNK, as well as genes causative of monogenic PD. Genetic and clinical data of 18 TWNK-adPEO patients with parkinsonism were retrospectively analyzed. RESULTS: Six of 263 PD patients (2%), presenting either with isolated PD (n = 4) or in combination with bilateral ptosis (n = 2), carried TWNK likely pathogenic variants. Among 18 TWNK-adPEO patients, 5 (28%) had parkinsonism. CONCLUSIONS: We show candidate TWNK variants occurring in PD without PEO. This finding will require further confirmatory studies. © 2022 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Transtornos Parkinsonianos , DNA Mitocondrial/genética , Humanos , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Mutação/genética , Doença de Parkinson/complicações , Doença de Parkinson/genética , Transtornos Parkinsonianos/patologia , Estudos Retrospectivos
13.
Ann Neurol ; 88(1): 18-32, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32219868

RESUMO

OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.


Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , GTP Fosfo-Hidrolases/genética , Atrofia Óptica/genética , Doenças do Nervo Óptico/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Sequenciamento do Exoma , Adulto Jovem
14.
J Neuroophthalmol ; 41(3): 309-315, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415265

RESUMO

BACKGROUND: RESCUE and REVERSE were 2 Phase 3 clinical trials that assessed the efficacy and safety of intravitreal gene therapy with lenadogene nolparvovec (rAAV2/2-ND4) for the treatment of Leber hereditary optic neuropathy (LHON). RESTORE is the long-term follow-up study of subjects treated in the RESCUE and REVERSE trials. METHODS: In RESCUE and REVERSE, 76 subjects with LHON because of the m.11778 G>A mutation in the mitochondrial gene ND4 received a single unilateral intravitreal injection of lenadogene nolparvovec. After 96 weeks, 61 subjects were enrolled in the long-term follow-up study RESTORE. The best-corrected visual acuity (BCVA) was assessed over a period of up to 52 months after onset of vision loss. A locally estimated scatterplot smoothing regression model was used to analyze changes in BCVA over time. Vision-related quality of life was reported using the visual function questionnaire-25 (VFQ-25). RESULTS: The population of MT-ND4 subjects enrolled in RESTORE was representative of the combined cohorts of RESCUE and REVERSE for mean age (35.1 years) and gender distribution (79% males). There was a progressive and sustained improvement of BCVA up to 52 months after the onset of vision loss. The final mean BCVA was 1.26 logarithm of the minimal angle of resolution 48 months after the onset of vision loss. The mean VFQ-25 composite score increased by 7 points compared with baseline. CONCLUSION: The treatment effect of lenadogene nolparvovec on BCVA and vision-related quality of life observed 96 weeks (2 years) after treatment in RESCUE and REVERSE was sustained at 3 years in RESTORE, with a maximum follow-up of 52 months (4.3 years) after the onset of vision loss.


Assuntos
Terapia Genética/métodos , Atrofia Óptica Hereditária de Leber/terapia , Proteínas Recombinantes/administração & dosagem , Acuidade Visual , Campos Visuais , Adolescente , Adulto , Idoso , DNA Mitocondrial/genética , Método Duplo-Cego , Feminino , Seguimentos , Humanos , Injeções Intravítreas , Masculino , Pessoa de Meia-Idade , Mutação , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/fisiopatologia , Qualidade de Vida , Fatores de Tempo , Tomografia de Coerência Óptica , Adulto Jovem
15.
PLoS Genet ; 14(2): e1007210, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29444077

RESUMO

We here report on the existence of Leber's hereditary optic neuropathy (LHON) associated with peculiar combinations of individually non-pathogenic missense mitochondrial DNA (mtDNA) variants, affecting the MT-ND4, MT-ND4L and MT-ND6 subunit genes of Complex I. The pathogenic potential of these mtDNA haplotypes is supported by multiple evidences: first, the LHON phenotype is strictly inherited along the maternal line in one very large family; second, the combinations of mtDNA variants are unique to the two maternal lineages that are characterized by recurrence of LHON; third, the Complex I-dependent respiratory and oxidative phosphorylation defect is co-transferred from the proband's fibroblasts into the cybrid cell model. Finally, all but one of these missense mtDNA variants cluster along the same predicted fourth E-channel deputed to proton translocation within the transmembrane domain of Complex I, involving the ND1, ND4L and ND6 subunits. Hence, the definition of the pathogenic role of a specific mtDNA mutation becomes blurrier than ever and only an accurate evaluation of mitogenome sequence variation data from the general population, combined with functional analyses using the cybrid cell model, may lead to final validation. Our study conclusively shows that even in the absence of a clearly established LHON primary mutation, unprecedented combinations of missense mtDNA variants, individually known as polymorphisms, may lead to reduced OXPHOS efficiency sufficient to trigger LHON. In this context, we introduce a new diagnostic perspective that implies the complete sequence analysis of mitogenomes in LHON as mandatory gold standard diagnostic approach.


Assuntos
DNA Mitocondrial/genética , Herança Multifatorial , Mutação de Sentido Incorreto , Atrofia Óptica Hereditária de Leber/genética , Penetrância , Adulto , Sequência de Aminoácidos , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Epistasia Genética , Família , Feminino , Genes Mitocondriais , Humanos , Masculino , Modelos Moleculares , NADH Desidrogenase/química , NADH Desidrogenase/genética , Linhagem , Adulto Jovem
16.
Alzheimers Dement ; 17(1): 103-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090722

RESUMO

In the last 20 years, research focused on developing retinal imaging as a source of potential biomarkers for Alzheimer's disease and other neurodegenerative diseases, has increased significantly. The Alzheimer's Association and the Alzheimer's & Dementia: Diagnosis, Assessment, Disease Monitoring editorial team (companion journal to Alzheimer's & Dementia) convened an interdisciplinary discussion in 2019 to identify a path to expedite the development of retinal biomarkers capable of identifying biological changes associated with AD, and for tracking progression of disease severity over time. As different retinal imaging modalities provide different types of structural and/or functional information, the discussion reflected on these modalities and their respective strengths and weaknesses. Discussion further focused on the importance of defining the context of use to help guide the development of retinal biomarkers. Moving from research to context of use, and ultimately to clinical evaluation, this article outlines ongoing retinal imaging research today in Alzheimer's and other brain diseases, including a discussion of future directions for this area of study.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Retina/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Biomarcadores , Encéfalo/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade
17.
Neurogenetics ; 21(2): 87-96, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31900734

RESUMO

Many aspects of epilepsy in mitochondrial disorders (MDs) need to be further clarified. To this aim, we explored retrospectively a cohort of individuals with MDs querying the "Nationwide Italian Collaborative Network of Mitochondrial Diseases" (NICNMD) database (1467 patients included since 2010 to December 2016). We collected information on age at epilepsy onset, seizure type and frequency, genetic findings, and antiepileptic drugs (AEDs). At the time of our survey, 147/1467 (10%) patients in the NICNMD database had epilepsy. Complete information was available only for 98 patients, 52 males and 46 females, aged 5-92 years (mean age 40.4 ± 18.4; 14/98 children/teenagers and 84 adults). Epilepsy was the presenting feature of MD in 46/98 (47%) individuals, with onset at a median age of 19 years (range, 0.2-68; < 3 years in 14/97 (14%), 3-19 years in 36/97 (37%), > 19 years in 47/97 (49%)). Moreover, 91/98 patients (93%) displayed multiple seizures, with daily or weekly frequency in 25/91 (28%). Interictal EEG was abnormal in 70/78 (90%) patients, displaying abnormal background (47/70; 67%) and/or interictal paroxysms (53/70; 76%). Eighty of 90 patients (89%) displayed a 50-100% reduction of seizures on AEDs; levetiracetam was the most commonly used. Forty-one patients (42%) carried the m.3243A>G mutation, 16 (16%) the m.8344A>G, and 9 (9%) nuclear DNA (nDNA) mutations. Individuals with early-onset seizures mainly carried nDNA mutations and had a more severe epilepsy phenotype, higher seizure frequency, and disorganized background EEG activity. A better definition of epilepsy in MDs may foster the diagnostic workup, management, and treatment of affected patients, and allow more homogeneous patient stratification.


Assuntos
Epilepsia/epidemiologia , Doenças Mitocondriais/epidemiologia , Convulsões/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Epilepsia/complicações , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/complicações , Estudos Retrospectivos , Convulsões/complicações , Inquéritos e Questionários , Adulto Jovem
18.
Hum Genet ; 139(11): 1429-1441, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32488467

RESUMO

Autozygosity-driven exome analysis has been shown effective for identification of genes underlying recessive diseases especially in countries of the so-called Greater Middle East (GME), where high consanguinity unravels the phenotypic effects of recessive alleles and large family sizes facilitate homozygosity mapping. In Italy, as in most European countries, consanguinity is estimated low. Nonetheless, consanguineous Italian families are not uncommon in publications of genetic findings and are often key to new associations of genes with rare diseases. We collected 52 patients from 47 consanguineous families with suspected recessive diseases, 29 originated in GME countries and 18 of Italian descent. We performed autozygosity-driven exome analysis by detecting long runs of homozygosity (ROHs > 1.5 Mb) and by prioritizing candidate clinical variants within. We identified a pathogenic synonymous variant that had been previously missed in NARS2 and we increased an initial high diagnostic rate (47%) to 55% by matchmaking our candidate genes and including in the analysis shorter ROHs that may also happen to be autozygous. GME and Italian families contributed to diagnostic yield comparably. We found no significant difference either in the extension of the autozygous genome, or in the distribution of candidate clinical variants between GME and Italian families, while we showed that the average autozygous genome was larger and the mean number of candidate clinical variants was significantly higher (p = 0.003) in mutation-positive than in mutation-negative individuals, suggesting that these features influence the likelihood that the disease is autozygosity-related. We highlight the utility of autozygosity-driven genomic analysis also in countries and/or communities, where consanguinity is not widespread cultural tradition.


Assuntos
Testes Genéticos/métodos , Genoma Humano/genética , Mapeamento Cromossômico/métodos , Consanguinidade , Exoma/genética , Família , Feminino , Genes Recessivos/genética , Humanos , Itália , Masculino , Oriente Médio , Mutação/genética , Linhagem
19.
Hum Mol Genet ; 26(R2): R139-R150, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28977448

RESUMO

The optic nerve and the cells that give origin to its 1.2 million axons, the retinal ganglion cells (RGCs), are particularly vulnerable to neurodegeneration related to mitochondrial dysfunction. Optic neuropathies may range from non-syndromic genetic entities, to rare syndromic multisystem diseases with optic atrophy such as mitochondrial encephalomyopathies, to age-related neurodegenerative diseases such as Alzheimer's and Parkinson's disease where optic nerve involvement has, until recently, been a relatively overlooked feature. New tools are available to thoroughly investigate optic nerve function, allowing unparalleled access to this part of the central nervous system. Understanding the molecular pathophysiology of RGC neurodegeneration and optic atrophy, is key to broadly understanding the pathogenesis of neurodegenerative disorders, for monitoring their progression in describing the natural history, and ultimately as outcome measures to evaluate therapies. In this review, the different layers, from molecular to anatomical, that may contribute to RGC neurodegeneration and optic atrophy are tackled in an integrated way, considering all relevant players. These include RGC dendrites, cell bodies and axons, the unmyelinated retinal nerve fiber layer and the myelinated post-laminar axons, as well as olygodendrocytes and astrocytes, looked for unconventional functions. Dysfunctional mitochondrial dynamics, transport, homeostatic control of mitobiogenesis and mitophagic removal, as well as specific propensity to apoptosis may target differently cell types and anatomical settings. Ultimately, we can envisage new investigative approaches and therapeutic options that will speed the early diagnosis of neurodegenerative diseases and their cure.


Assuntos
Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Animais , Apoptose , Axônios/metabolismo , DNA Mitocondrial/genética , Humanos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Degeneração Neural/genética , Doenças Neurodegenerativas/fisiopatologia , Atrofia Óptica/fisiopatologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Hereditária de Leber/genética , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Retina/metabolismo
20.
Ophthalmology ; 126(7): 1033-1044, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30822445

RESUMO

PURPOSE: To assess changes of retinal ganglion cells (RGCs) and visual pathways' function in patients with Leber's hereditary optic neuropathy (LHON) during 12 months of follow-up of the chronic phase. DESIGN: Retrospective case series. PARTICIPANTS: Twenty-two patients with LHON (mean age, 36.3±9.3 years) in the "chronic phase" of the disease, providing 42 eyes (LHON group) with different pathogenic mitochondrial DNA mutations (group 11778: 21 eyes; group 3460: 4 eyes; group 14484: 13 eyes; and group 14568: 4 eyes) were enrolled. Twenty-five age-similar healthy participants, providing 25 eyes, served as controls. METHODS: Pattern electroretinogram (PERG) and visual evoked potentials (VEP), in response to 60' and 15' checks visual stimuli, were recorded at baseline in all subjects and after 6 and 12 months of follow-up in patients with LHON. At baseline, in all LHON eyes for each PERG and VEP parameter (amplitude and implicit time), the 95% confidence limit (CL) of test-retest variability was calculated. The PERG and VEP mean values observed in LHON eyes were compared (1-way analysis of variance [ANOVA]) with those of controls. During the follow-up, the PERG and VEP differences observed with respect to baseline were evaluated by ANOVA. MAIN OUTCOME MEASURES: Changes of individual and mean absolute values of 60' and 15' PERG amplitude and VEP amplitude and implicit time at each time point compared with baseline values in the LHON group. RESULTS: At baseline, mean values of PERG and VEP parameters detected in the LHON group were significantly (P < 0.01) different with respect to control values. In the LHON group, at 6 and 12 months of follow-up, the majority of eyes showed unmodified (within 95% CL) PERG and VEP values, and mean absolute values of these measures were not significantly (P > 0.01) different from baseline values. CONCLUSIONS: In our untreated patients with chronic LHON, with different specific pathogenic mutations, RGCs and visual pathways function were not significantly modified during 12 months of follow-up. This should be considered in the disease natural history when attempts for treatments are proposed in chronic LHON.


Assuntos
Atrofia Óptica Hereditária de Leber/fisiopatologia , Células Ganglionares da Retina/fisiologia , Vias Visuais/fisiologia , Adulto , Análise de Variância , Estudos de Casos e Controles , Eletrorretinografia , Potenciais Evocados Visuais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA