Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731601

RESUMO

Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Glicólise/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos
2.
Bioorg Chem ; 138: 106607, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37210829

RESUMO

Growth factor receptor bound protein 2 (Grb2) is an adaptor protein featured by a nSH3-SH2-cSH3 domains. Grb2 finely regulates important cellular pathways such as growth, proliferation and metabolism and a minor lapse of this tight control may totally change the entire pathway to the oncogenic. Indeed, Grb2 is found overexpressed in many tumours type. Consequently, Grb2 is an attractive therapeutic target for the development of new anticancer drug. Herein, we reported the synthesis and the biological evaluation of a series of Grb2 inhibitors, developed starting from a hit-compound already reported by this research unit. The newly synthesized compounds were evaluated by kinetic binding experiments, and the most promising derivatives were assayed in a short panel of cancer cells. Five of the newly synthesized derivatives proved to be able to bind the targeted protein with valuable inhibitory concentration in one-digit micromolar concentration. The most active compound of this series, derivative 12, showed an inhibitory concentration of about 6 µM for glioblastoma and ovarian cancer cells, and an IC50 of 1.67 for lung cancer cell. For derivative 12, the metabolic stability and the ROS production was also evaluated. The biological data together with the docking studies led to rationalize an early structure activity relationship.


Assuntos
Antineoplásicos , Proteína Adaptadora GRB2/química , Proteína Adaptadora GRB2/metabolismo , Sequência de Aminoácidos , Ligação Proteica , Antineoplásicos/farmacologia , Relação Estrutura-Atividade
3.
Drug Resist Updat ; 60: 100788, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35168144

RESUMO

Many cancer patients frequently fail to respond to anti-cancer treatment due to therapy resistance which is the major obstacle towards curative cancer treatment. Therefore, identification of the molecular mechanisms underlying resistance is of paramount clinical and economic importance. The advent of targeted therapies based on a molecular understanding of cancer could serve as a model for strategies to overcome drug resistance. Accordingly, the identification and validation of proteins critically involved in resistance mechanisms represent a path towards innovative therapeutic strategies to improve the clinical outcome of cancer patients. In this review, we discuss emerging targets, small molecule therapeutics and drug delivery strategies to overcome therapy resistance. We focus on rational treatment strategies based on transcription factors, pseudokinases, nuclear export receptors and immunogenic cell death strategy. Historically, unliganded transcription factors and pseudokinases were considered undruggable while blocking the nuclear export e.g., through inhibition of the nuclear export receptor CRM1 was predicted as highly toxic. Recent success inhibiting Gli-1, HIF-1α, HIF-2α and reactivating the tumor suppressor transcription factors p53 and FOXO illustrates the feasibility and power of this targeting approach. Similarly, progress has been made in modulating the activity of pseudokinase proteins implicated in therapy resistance including members of the Tribbles protein family. On the other hand, the recent clinical approval of Selinexor, a specific inhibitor of CRM-1, a protein that mediates the transport of cargos with leucine-rich nuclear export signals and known to be a driver of drug resistance, represents the proof-of-concept for inhibiting the nuclear export as a feasible strategy to overcome therapy resistance. The ever-growing capacity to target resistance mechanisms with judiciously selected small molecules, some of which are being formulated within smart nanoparticles, will pave the way towards the improvement of the clinical outcome and realize the full potential of targeted therapies and immunotherapies.


Assuntos
Antineoplásicos , Neoplasias , Transporte Ativo do Núcleo Celular/fisiologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/patologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/farmacologia
4.
Arch Pharm (Weinheim) ; 356(10): e2300354, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37603378

RESUMO

Targeting tubulin polymerization and depolymerization represents a promising approach to treat solid tumors. In this study, we investigated the molecular mechanisms underlying the anticancer effects of a structurally novel tubulin inhibitor, [4-(4-aminophenyl)-1-(4-fluorophenyl)-1H-pyrrol-3-yl](3,4,5-trimethoxyphenyl)methanone (ARDAP), in two- and three-dimensional MCF-7 breast cancer models. At sub-cytotoxic concentrations, ARDAP showed a marked decrease in cell proliferation, colony formation, and ATP intracellular content in MCF-7 cells, by acting through a cytostatic mechanism. Additionally, drug exposure caused blockage of the epithelial-to-mesenchymal transition (EMT). In 3D cell culture, ARDAP negatively affected tumor spheroid growth, with inhibition of spheroid formation and reduction of ATP concentration levels. Notably, ARDAP exposure promoted the differentiation of MCF-7 cells by inducing: (i) expression decrease of Oct4 and Sox2 stemness markers, both in 2D and 3D models, and (ii) downregulation of the stem cell surface marker CD133 in 2D cell cultures. Interestingly, treated MCF7 cells displayed a major sensitivity to cytotoxic effects of the conventional chemotherapeutic drug doxorubicin. In addition, although exhibiting growth inhibitory effects against breast cancer cells, ARDAP showed insignificant harm to MCF10A healthy cells. Collectively, our results highlight the potential of ARDAP to emerge as a new chemotherapeutic agent or adjuvant compound in chemotherapeutic treatments.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Proliferação de Células , Trifosfato de Adenosina , Linhagem Celular Tumoral
5.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615620

RESUMO

A key step in the development of medicinal products is the research and validation of selective and sensitive analytical methods for the control of impurities from synthesis and degradation. As most impurities are similar in structure to the drug substance, the achievement of chemo-selective conditions is usually challenging. Herein, a direct and highly selective ultra-high-performance liquid chromatographic method for determining the assay and related substances content in medicinal products containing rosuvastatin calcium salt (RSV) is presented. RSV is used to treat high cholesterol levels and prevent heart attacks and strokes. The most engaging feature of this method was the baseline separation of all organic related substances listed in the European Pharmacopoeia (EP) monograph for the RSV tablets, achieved for the first time in less than 15 min using the Acquity BEH C18 (100 mm × 2.1 mm, 1.7 µm) column under reversed-phase isocratic conditions. The mobile phase adopted for the chemo-selective analysis does not contain buffers but instead contains trifluoroacetic as an acid additive. The chromatographic method was validated according to the guidelines of the International Conference on Harmonization (ICH) and proved to be linear, precise and accurate for determining the content of RSV and related chiral substances in tablet formulations.


Assuntos
Rosuvastatina Cálcica , Limite de Detecção , Cromatografia Líquida de Alta Pressão/métodos , Comprimidos , Reprodutibilidade dos Testes
6.
Molecules ; 28(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005235

RESUMO

Triple-negative breast cancer (TNBC) is one of the most heterogeneous and aggressive breast cancer subtypes with a high risk of death on recurrence. To date, TNBC is very difficult to treat due to the lack of an effective targeted therapy. However, recent advances in the molecular characterization of TNBC are encouraging the development of novel drugs and therapeutic combinations for its therapeutic management. In the present review, we will provide an overview of the currently available standard therapies and new emerging therapeutic strategies against TNBC, highlighting the promises that newly developed small molecules, repositioned drugs, and combination therapies have of improving treatment efficacy against these tumors.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Terapia Combinada , Descoberta de Drogas
7.
Molecules ; 27(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431838

RESUMO

Aberrant accumulation of ß-catenin in the cell nucleus as a result of deregulation of the Wnt/ß-catenin pathway is found in various types of cancer. Direct ß-catenin targeting agents are being researched despite obstacles; however, specific ß-catenin drugs for clinical treatments have not been approved so far. We focused on direct ß-catenin targeting of potential therapeutic value as anticancer agents. This review provides recent advances on small molecule ß-catenin agents. Structure-activity relationships and biological activities of reported inhibitors are discussed. This work provides useful knowledge in the discovery of ß-catenin agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , beta Catenina/metabolismo , Via de Sinalização Wnt , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Núcleo Celular/metabolismo
8.
Molecules ; 26(24)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34946546

RESUMO

There are promising new therapeutic agents for CRC patients, including novel small-molecule inhibitors and immune checkpoint blockers. We focused on emerging CRC's therapeutic agents that have shown the potential for progress in clinical practice. This review provides an overview of tyrosine kinase inhibitors targeting VEGF and KIT, BRAF and MEK inhibitors, TLR9 agonist, STAT3 inhibitors, and immune checkpoint blockers (PD1/PDL-1 inhibitors), for which recent advances have been reported. These new agents have the potential to provide benefits to CRC patients with unmet medical needs.


Assuntos
Neoplasias Colorretais , Terapia de Alvo Molecular , Proteínas de Neoplasias , Inibidores de Proteínas Quinases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/enzimologia , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico
9.
Molecules ; 24(9)2019 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060229

RESUMO

Background: KDM5 enzymes are H3K4 specific histone demethylases involved in transcriptional regulation and DNA repair. These proteins are overexpressed in different kinds of cancer, including breast, prostate and bladder carcinomas, with positive effects on cancer proliferation and chemoresistance. For these reasons, these enzymes are potential therapeutic targets. Methods: In the present study, we analyzed the effects of three different inhibitors of KDM5 enzymes in MCF-7 breast cancer cells over-expressing one of them, namely KDM5B/JARID1B. In particular we tested H3K4 demethylation (western blot); radio-sensitivity (cytoxicity and clonogenic assays) and damage accumulation (COMET assay and kinetics of H2AX phosphorylation). Results: we show that all three compounds with completely different chemical structures can selectively inhibit KDM5 enzymes and are capable of increasing sensitivity of breast cancer cells to ionizing radiation and radiation-induced damage. Conclusions: These findings confirm the involvement of H3K4 specific demethylases in the response to DNA damage, show a requirement of the catalytic function and suggest new strategies for the therapeutic use of their inhibitors.


Assuntos
Neoplasias da Mama/enzimologia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Nucleares/genética , Radiossensibilizantes/farmacologia , Proteínas Repressoras/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Proteínas Nucleares/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/química , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/química , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação
10.
Biochemistry ; 57(5): 839-851, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29293331

RESUMO

The WNT pathway interconnects a network of signaling events involved in a huge plethora of cellular processes, from organogenesis to tissue homeostasis. Despite its importance, the exiguity of organic drugs directly targeting the members of the Frizzled family of WNT receptors has hampered progress across the whole spectrum of biological fields in which the signaling is involved. We here present FzM1.8, a small molecule acting as an allosteric agonist of Frizzled receptor FZD4. FzM1.8 derives from FzM1, a negative allosteric modulator of the receptor. Replacement of FzM1 thiophene with a carboxylic moiety induces a molecular switch in the lead and transforms the molecule into an activator of WNT signaling. We here show that, in the absence of any WNT ligand, FzM1.8 binds to FZD4, promotes recruitment of heterotrimeric G proteins, and biases WNT signaling toward a noncanonical route that involves PI3K. Finally, in colon cancer cells, we prove that the FZD4/PI3K axis elicited by FzM1.8 preserves stemness and promotes proliferation of undifferentiated cells.


Assuntos
Receptores Frizzled/agonistas , Receptores Frizzled/antagonistas & inibidores , Via de Sinalização Wnt/fisiologia , Polipose Adenomatosa do Colo/patologia , Regulação Alostérica , Linhagem Celular Tumoral , Simulação por Computador , Meios de Cultivo Condicionados/farmacologia , Endocitose , Células HEK293 , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Células-Tronco Neoplásicas/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Conformação Proteica , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a/metabolismo
11.
Nat Chem Biol ; 11(4): 280-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25751279

RESUMO

Upon binding, ligands can chaperone their protein targets by preventing them from misfolding and aggregating. Thus, an organic molecule that works as folding chaperone for a protein might be its specific ligand, and, similarly, the chaperone potential could represent an alternative readout in a molecular screening campaign toward the identification of new hits. Here we show that small molecules selected for acting as pharmacological chaperones on a misfolded mutant of the Frizzled4 (Fz4) receptor bind and modulate wild-type Fz4, representing what are to our knowledge the first organic ligands of this until-now-undruggable GPCR. The novelty and the advantages of the screening platform, the allosteric binding site addressed by these new ligands and the mechanism they use to modulate Fz4 suggest new avenues for development of inhibitors of the Wnt-ß-catenin pathway and for drug discovery.


Assuntos
Receptores Frizzled/química , Chaperonas Moleculares/química , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Glicerol/química , Células HEK293 , Células HeLa , Humanos , Ligantes , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Dobramento de Proteína , Receptores Acoplados a Proteínas G/química
12.
J Enzyme Inhib Med Chem ; 32(1): 1091-1101, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28776445

RESUMO

Dengue virus (DENV) is the leading mosquito-transmitted viral infection in the world. With more than 390 million new infections annually, and up to 1 million clinical cases with severe disease manifestations, there continues to be a need to develop new antiviral agents against dengue infection. In addition, there is no approved anti-DENV agents for treating DENV-infected patients. In the present study, we identified new compounds with anti-DENV replication activity by targeting viral replication enzymes - NS5, RNA-dependent RNA polymerase (RdRp) and NS3 protease, using cell-based reporter assay. Subsequently, we performed an enzyme-based assay to clarify the action of these compounds against DENV RdRp or NS3 protease activity. Moreover, these compounds exhibited anti-DENV activity in vivo in the ICR-suckling DENV-infected mouse model. Combination drug treatment exhibited a synergistic inhibition of DENV replication. These results describe novel prototypical small anti-DENV molecules for further development through compound modification and provide potential antivirals for treating DENV infection and DENV-related diseases.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Serina Endopeptidases/metabolismo , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dengue/virologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
13.
Tumour Biol ; 37(3): 3705-17, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26462840

RESUMO

Violacein (VIO; 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one), an indole-derived purple-colored pigment, produced by a limited number of Gram-negative bacteria species, including Chromobacterium violaceum and Janthinobacterium lividum, has been demonstrated to have anti-cancer activity, as it interferes with survival transduction signaling pathways in different cancer models. Head and neck carcinoma (HNC) represents the sixth most common and one of the most fatal cancers worldwide. We determined whether VIO was able to inhibit head and neck cancer cell growth both in vitro and in vivo. We provide evidence that VIO treatment of human and mouse head and neck cancer cell lines inhibits cell growth and induces autophagy and apoptosis. In fact, VIO treatment increased PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of light chain 3-II (LC3-II). Moreover, VIO was able to induce p53 degradation, cytoplasmic nuclear factor kappa B (NF-κB) accumulation, and reactive oxygen species (ROS) production. VIO induced a significant increase in ROS production. VIO administration was safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) in vivo and prolonged median survival. Taken together, our results indicate that the treatment of head and neck cancer cells with VIO can be useful in inhibiting in vivo and in vitro cancer cell growth. VIO may represent a suitable tool for the local treatment of HNC in combination with standard therapies.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Indóis/farmacologia , Oxalobacteraceae/química , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Caspases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias das Glândulas Salivares/tratamento farmacológico , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
14.
J Enzyme Inhib Med Chem ; 30(6): 947-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25694065

RESUMO

We describe the characterisation of a series of 4,4'-biphenylsulfonamides as selective inhibitors of matrix metalloproteases MMP-2 and -13, two enzymes involved in cell invasion and angiogenesis. Double-inhibitor studies in the presence of acetohydroxamic acid show that these molecules do not bind the catalytic zinc. Moreover, two of the characterised inhibitors (11 and 19) act as non-competitive inhibitors, whereas the para-methyl ester derivative 13 behaves as a competitive inhibitor. This finding suggests that this class of molecules binds to a catalytic subsite, possibly the S1'-pocket. Moreover, since these compounds also act as inhibitors of carbonic anhydrases (CAs), another family of enzymes involved in cell invasion, they could be potentially useful as CA/MMP dual target inhibitors with increased efficacy as anticancer agents.


Assuntos
Compostos de Bifenilo/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Sulfonamidas/farmacologia , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/química , Relação Dose-Resposta a Droga , Humanos , Cinética , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
15.
ACS Med Chem Lett ; 14(4): 479-486, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077391

RESUMO

In this study, 1H-pyrazole-3-carboxylic acids related to the cannabinoid type 1 (CB1) receptor antagonist rimonabant were amidated with valine or tert-leucine, and the resulting acids were further diversified as methyl esters, amides, and N-methyl amides. In vitro receptor binding and functional assays demonstrated a wide series of activities related to the CB1 receptors (CB1Rs). Compound 34 showed a high CB1R binding affinity (K i = 6.9 nM) and agonist activity (EC50 = 46 nM; E max = 135%). Radioligand binding and [35S]GTPγS binding assays also demonstrated its selectivity and specificity to CB1Rs. Moreover, in vivo experiments revealed that 34 was slightly more effective than the CB1 agonist WIN55,212-2 in the early phase of the formalin test, indicating a short duration of the analgesic effect. Interestingly, in a mouse model of zymosan-induced hindlimb edema, 34 was able to maintain the percentage of paw volume below 75% for 24 h following subcutaneous injection. After intraperitoneal administration, 34 increased the food intake of mice, suggesting potential activity on CB1Rs.

16.
Eur J Med Chem ; 246: 114997, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502578

RESUMO

We synthesized a new inhibitor of tubulin polymerization, the pyrrole (1-(7H-pyrrolo[2,3- d]pyrimidin-4-yl)-1H-pyrrol-3-yl)(3,4,5-trimethoxy-phenyl)methanone 6 (RS6077). Compound 6 inhibited the growth of multiple cancer cell lines, with IC50 values in the nM range, without affecting the growth of non-transformed cells. The novel agent arrested cells in the G2/M phase of the cell cycle in both transformed and non-transformed cell lines, but single cell analysis by time-lapse video recording revealed a remarkable selectivity in cell death induction by compound 6: in RPE-1 non-transformed cells mitotic arrest induced was not necessarily followed by cell death; in contrast, in HeLa transformed and in lymphoid-derived transformed AHH1 cell lines, cell death was effectively induced during mitotic arrest in cells that fail to complete mitosis. Importantly, the agent also inhibited the growth of the lymphoma TMD8 xenograft model. Together these findings suggest that derivative 6 has a selective efficacy in transformed vs non-transformed cells and indicate that the same compound has potential as novel therapeutic agent to treat lymphomas. Compound 6 showed good metabolic stability upon incubation with human liver microsomes.


Assuntos
Apoptose , Linfoma , Humanos , Morte Celular , Mitose , Células HeLa , Tubulina (Proteína)/metabolismo , Linfoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
17.
ACS Pharmacol Transl Sci ; 6(7): 1087-1103, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37470018

RESUMO

Despite intensive efforts, no inhibitors of the Wnt/ß-catenin signaling pathway have been approved so far for the clinical treatment of cancer. We synthesized novel N-(heterocyclylphenyl)benzenesulfonamides as ß-catenin inhibitors. Compounds 5-10 showed strong inhibition of the luciferase activity. Compounds 5 and 6 inhibited the MDA-MB-231, HCC1806, and HCC1937 TNBC cells. Compound 9 induced in vitro cell death in SW480 and HCT116 cells and in vivo tumorigenicity of a human colorectal cancer line HCT116. In a co-immunoprecipitation study in HCT116 cells transfected with Myc-tagged T-cell factor 4 (Tcf-4), compound 9 abrogated the association between ß-catenin and Tcf-4. The crystallographic analysis of the ß-catenin Armadillo repeats domain revealed that compound 9 and Tcf-4 share a common binding site within the hotspot binding region close to Lys508. To our knowledge, compound 9 is the first small molecule ligand of this region to be reported. These results highlight the potential of this novel class of ß-catenin inhibitors as anticancer agents.

18.
J Med Chem ; 66(21): 14824-14842, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37902628

RESUMO

We synthesized new pyrrole and indole derivatives as human carbonic anhydrase (hCA) inhibitors with the potential to inhibit the Wnt/ß-catenin signaling pathway. The presence of both N1-(4-sulfonamidophenyl) and 3-(3,4,5-trimethoxyphenyl) substituents was essential for strong hCA inhibitors. The most potent hCA XII inhibitor 15 (Ki = 6.8 nM) suppressed the Wnt/ß-catenin signaling pathway and its target genes MYC, Fgf20, and Sall4 and exhibited the typical markers of apoptosis, cleaved poly(ADP-ribose)polymerase, and cleaved caspase-3. Compound 15 showed strong inhibition of viability in a panel of cancer cells, including colorectal cancer and triple-negative breast cancer cells, was effective against the NCI/ADR-RES DOX-resistant cell line, and restored the sensitivity to doxorubicin (DOX) in HT29/DX and MDCK/P-gp cells. Compound 15 is a novel dual-targeting compound with activity against hCA and Wnt/ß-catenin. It thus has a broad targeting spectrum and is an anticancer agent with specific potential in P-glycoprotein overexpressing cell lines.


Assuntos
Anidrases Carbônicas , Neoplasias , Humanos , Relação Estrutura-Atividade , Resistência a Múltiplos Medicamentos , Via de Sinalização Wnt , Resistencia a Medicamentos Antineoplásicos , Anidrases Carbônicas/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrase Carbônica IX , Estrutura Molecular , Benzenossulfonamidas
19.
Eur J Med Chem ; 240: 114605, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35868126

RESUMO

Most cancer cells switch their metabolism from mitochondrial oxidative phosphorylation to aerobic glycolysis to generate ATP and precursors for the biosynthesis of key macromolecules. The aerobic conversion of pyruvate to lactate, coupled to oxidation of the nicotinamide cofactor, is a primary hallmark of cancer and is catalyzed by lactate dehydrogenase (LDH), a central effector of this pathological reprogrammed metabolism. Hence, inhibition of LDH is a potential new promising therapeutic approach for cancer. In the search for new LDH inhibitors, we carried out a structure-based virtual screening campaign. Here, we report the identification of a novel specific LDH inhibitor, the pyridazine derivative 18 (RS6212), that exhibits potent anticancer activity within the micromolar range in multiple cancer cell lines and synergizes with complex I inhibition in the suppression of tumor growth. Altogether, our data support the conclusion that compound 18 deserves to be further investigated as a starting point for the development of LDH inhibitors and for novel anticancer strategies based on the targeting of key metabolic steps.


Assuntos
L-Lactato Desidrogenase , Neoplasias , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Glicólise , Humanos , L-Lactato Desidrogenase/metabolismo , Ácido Láctico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação Oxidativa
20.
ACS Med Chem Lett ; 13(4): 540-545, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35450346

RESUMO

Innovation in medicinal chemistry has been at the heart of ACS Medicinal Chemistry Letters since the journal's founding 10 years ago. In his inaugural editorial, Editor-in-Chief Dennis Liotta laid out a vision for the journal to become the "premier international journal for rapid communication of cutting-edge studies," and, after 10 years, it has become exactly that. The great hope of drug discovery scientists is that their innovations will lead to new therapeutics to treat unmet medical needs. In the spirit of innovation and in celebration of the recent 10th anniversary of ACS Med. Chem. Lett., we highlight five therapeutics that were first reported or first comprehensively characterized within ACS Med. Chem. Lett.. This overview also serves to introduce the expansion of the scope of the Innovations article type to include Topical Innovations. With this extension, the journal hopes to provide a forum to showcase concise (rather than comprehensive) reviews of topics that are both timely and of great interest to the medicinal chemistry community. Moreover, these articles will emphasize the next steps to move the field toward new areas of interest in medicinal chemistry. Appropriate topics might include case studies of clinical candidates or approved drugs, new assay technologies in drug discovery, novel target classes, and innovative new approaches towards modulation of human physiology. Since its founding 10 years ago, ACS Med. Chem. Lett. has established itself as a venue for the rapid communication of studies in medicinal chemistry and drug discovery. There have been several drugs and clinical candidates that were first reported or first comprehensively characterized in ACS Med. Chem. Lett. In celebration of the 10th anniversary of ACS Med. Chem. Lett. this Topical Innovations article highlights five of these compounds: Ivosidenib, Siponimod, Glasdegib, Parsaclisib, and Dabrafenib.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA