Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 22(19): 1937-1938, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34617650

RESUMO

The front cover artwork is provided by the groups of Prof. Thomas Theis (North Carolina State University) Prof. Volker Blum (Duke University). The image shows the reaction network of Signal Amplification by Reversible Exchange (SABRE), elucidated by density functional theory (DFT). Read the full text of the Review at 10.1002/cphc.202100204.

2.
Chemphyschem ; 22(19): 1947-1957, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34549869

RESUMO

An in-depth theoretical analysis of key chemical equilibria in Signal Amplification by Reversible Exchange (SABRE) is provided, employing density functional theory calculations to characterize the likely reaction network. For all reactions in the network, the potential energy surface is probed to identify minimum energy pathways. Energy barriers and transition states are calculated, and harmonic transition state theory is applied to calculate exchange rates that approximate experimental values. The reaction network energy surface can be modulated by chemical potentials that account for the dependence on concentration, temperature, and partial pressure of molecular constituents (hydrogen, methanol, pyridine) supplied to the experiment under equilibrium conditions. We show that, under typical experimental conditions, the Gibbs free energies of the two key states involved in pyridine-hydrogen exchange at the common Ir-IMes catalyst system in methanol are essentially the same, i. e., nearly optimal for SABRE. We also show that a methanol-containing intermediate is plausible as a transient species in the process.


Assuntos
Teoria da Densidade Funcional , Hidrogênio/química , Metanol/química , Piridinas/química , Propriedades de Superfície
3.
Chem Commun (Camb) ; 56(65): 9336-9339, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32671356

RESUMO

Here we report on chelating ligands for Signal Amplification By Reversible Exchange (SABRE) catalysts that permit hyperpolarisation on otherwise sterically hindered substrates. We demonstrate 1H enhancements of ∼100-fold over 8.5 T thermal for 2-substituted pyridines, and smaller, yet significant enhancements for provitamin B6 and caffeine. We also show 15N-enhancements of ∼1000-fold and 19F-enhancements of 30-fold.

4.
J Phys Chem Lett ; 8(13): 3008-3014, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28594557

RESUMO

Parahydrogen is an inexpensive and readily available source of hyperpolarization used to enhance magnetic resonance signals by up to four orders of magnitude above thermal signals obtained at ∼10 T. A significant challenge for applications is fast signal decay after hyperpolarization. Here we use parahydrogen-based polarization transfer catalysis at microtesla fields (first introduced as SABRE-SHEATH) to hyperpolarize 13C2 spin pairs and find decay time constants of 12 s for magnetization at 0.3 mT, which are extended to 2 min at that same field, when long-lived singlet states are hyperpolarized instead. Enhancements over thermal at 8.5 T are between 30 and 170 fold (0.02 to 0.12% polarization). We control the spin dynamics of polarization transfer by choice of microtesla field, allowing for deliberate hyperpolarization of either magnetization or long-lived singlet states. Density functional theory calculations and experimental evidence identify two energetically close mechanisms for polarization transfer: First, a model that involves direct binding of the 13C2 pair to the polarization transfer catalyst and, second, a model transferring polarization through auxiliary protons in substrates.

5.
J Phys Condens Matter ; 26(12): 125503, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24599225

RESUMO

The full quasiparticle band structure of CdWO4 is calculated within the single-shot GW (G0W0) approximation using maximally localized Wannier functions, which allows one to assess the validity of the commonly used scissor operator. Calculations are performed using the Godby-Needs plasmon pole model and the accurate contour deformation technique. It is shown that while the two methods yield identical band gap energies, the low-lying states are given inaccurately by the plasmon pole model. We report a band gap energy of 4.94 eV, including spin-orbit interaction at the DFT-LDA (density functional theory-local density approximation) level. Quasiparticle renormalization in CdWO4 is shown to be correlated with localization distance. Electron and hole effective masses are calculated at the DFT and G0W0 levels.


Assuntos
Compostos de Cádmio/química , Modelos Químicos , Modelos Moleculares , Ressonância de Plasmônio de Superfície/métodos , Compostos de Tungstênio/química , Simulação por Computador , Transporte de Elétrons , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA