Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neuroendocrinology ; 112(3): 215-234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33774644

RESUMO

INTRODUCTION: While the vast majority of research investigating the role of ghrelin or its receptor, GHS-R1a, in growth, feeding, and metabolism has been conducted in male rodents, very little is known about sex differences in this system. Furthermore, the role of GHS-R1a signaling in the control of pulsatile GH secretion and its link with growth or metabolic parameters has never been characterized. METHODS: We assessed the sex-specific contribution of GHS-R1a signaling in the activity of the GH/IGF-1 axis, metabolic parameters, and feeding behavior in adolescent (5-6 weeks old) or adult (10-19 weeks old) GHS-R KO (Ghsr-/-) and WT (Ghsr+/+) male and female mice. RESULTS: Adult Ghsr-/- male and female mice displayed deficits in weight and linear growth that were correlated with reduced GH pituitary contents in males only. GHS-R1a deletion was associated with reduced meal frequency and increased meal intervals, as well as reduced hypothalamic GHRH and NPY mRNA in males, not females. In adult, GH release from Ghsr-/- mice pituitary explants ex vivo was reduced independently of the sex. However, in vivo pulsatile GH secretion decreased in adult but not adolescent Ghsr-/- females, while in males, GHS-R1a deletion was associated with reduction in pulsatile GH secretion during adolescence exclusively. In males, linear growth did not correlate with pulsatile GH secretion, but rather with ApEn, a measure that reflects irregularity of the rhythmic secretion. Fat mass, plasma leptin concentrations, or ambulatory activity did not predict differences in GH secretion. DISCUSSION/CONCLUSION: These results point to a sex-dependent dimorphic effect of GHS-R1a signaling to modulate pulsatile GH secretion and meal pattern in mice with different compensatory mechanisms occurring in the hypothalamus of adult males and females after GHS-R1a deletion. Altogether, we show that GHS-R1a signaling plays a more critical role in the regulation of pulsatile GH secretion during adolescence in males and adulthood in females.


Assuntos
Grelina , Receptores de Grelina/metabolismo , Animais , Comportamento Alimentar , Feminino , Grelina/metabolismo , Hormônio do Crescimento/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Hipófise/metabolismo , Receptores de Grelina/genética
2.
Front Endocrinol (Lausanne) ; 12: 754522, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721302

RESUMO

Using preproghrelin-deficient mice (Ghrl-/-), we previously observed that preproghrelin modulates pulsatile growth hormone (GH) secretion in post-pubertal male mice. However, the role of ghrelin and its derived peptides in the regulation of growth parameters or feeding in females is unknown. We measured pulsatile GH secretion, growth, metabolic parameters and feeding behavior in adult Ghrl-/- and Ghrl+/+ male and female mice. We also assessed GH release from pituitary explants and hypothalamic growth hormone-releasing hormone (GHRH) expression and immunoreactivity. Body weight and body fat mass, linear growth, spontaneous food intake and food intake following a 48-h fast, GH pituitary contents and GH release from pituitary explants ex vivo, fasting glucose and glucose tolerance were not different among adult Ghrl-/- and Ghrl+/+ male or female mice. In vivo, pulsatile GH secretion was decreased, while approximate entropy, that quantified orderliness of secretion, was increased in adult Ghrl-/- females only, defining more irregular GH pattern. The number of neurons immunoreactive for GHRH visualized in the hypothalamic arcuate nucleus was increased in adult Ghrl-/- females, as compared to Ghrl+/+ females, whereas the expression of GHRH was not different amongst groups. Thus, these results point to sex-specific effects of preproghrelin gene deletion on pulsatile GH secretion, but not feeding, growth or metabolic parameters, in adult mice.


Assuntos
Grelina/fisiologia , Hormônio do Crescimento/metabolismo , Hipófise/metabolismo , Caracteres Sexuais , Ritmo Ultradiano , Animais , Núcleo Arqueado do Hipotálamo/citologia , Comportamento Alimentar , Feminino , Deleção de Genes , Masculino , Camundongos Endogâmicos C57BL
3.
Endocrinology ; 159(2): 1021-1034, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300858

RESUMO

Ghrelin is a potent orexigenic peptide hormone that acts through the growth hormone secretagogue receptor (GHSR), a G protein-coupled receptor highly expressed in the hypothalamus. In vitro studies have shown that GHSR displays a high constitutive activity, whose physiological relevance is uncertain. As GHSR gene expression in the hypothalamus is known to increase in fasting conditions, we tested the hypothesis that constitutive GHSR activity at the hypothalamic level drives the fasting-induced hyperphagia. We found that refed wild-type (WT) mice displayed a robust hyperphagia that continued for 5 days after refeeding and changed their food intake daily pattern. Fasted WT mice showed an increase in plasma ghrelin levels, as well as in GHSR expression levels and ghrelin binding sites in the hypothalamic arcuate nucleus. When fasting-refeeding responses were evaluated in ghrelin- or GHSR-deficient mice, only the latter displayed an ∼15% smaller hyperphagia, compared with WT mice. Finally, fasting-induced hyperphagia of WT mice was significantly smaller in mice centrally treated with the GHSR inverse agonist K-(D-1-Nal)-FwLL-NH2, compared with mice treated with vehicle, whereas it was unaffected in mice centrally treated with the GHSR antagonists D-Lys3-growth hormone-releasing peptide 6 or JMV2959. Taken together, genetic models and pharmacological results support the notion that constitutive GHSR activity modulates the magnitude of the compensatory hyperphagia triggered by fasting. Thus, the hypothalamic GHSR signaling system could affect the set point of daily food intake, independently of plasma ghrelin levels, in situations of negative energy balance.


Assuntos
Jejum/fisiologia , Grelina/fisiologia , Hiperfagia/etiologia , Receptores de Grelina/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Grelina/metabolismo , Hiperfagia/genética , Hiperfagia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Transdução de Sinais/genética
4.
Front Mol Neurosci ; 11: 321, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333721

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons, pathological accumulation of alpha-synuclein and motor symptoms, but also by non-motor symptoms. Metabolic abnormalities including body weight loss have been reported in patients and could precede by several years the emergence of classical motor manifestations. However, our understanding of the pathophysiological mechanisms underlying body weight loss in PD is limited. The present study investigated the links between alpha-synuclein accumulation and energy metabolism in transgenic mice overexpressing Human wild-type (WT) alpha-synuclein under the Thy1 promoter (Thy1-aSYN mice). Results showed that Thy1-aSYN mice gained less body weight throughout life than WT mice, with significant difference observed from 3 months of age. Body composition analysis of 6-month-old transgenic animals showed that body mass loss was due to lower adiposity. Thy1-aSYN mice displayed lower food consumption, increased spontaneous activity, as well as a reduced energy expenditure compared to control mice. While no significant change in glucose or insulin responses were observed, Thy1-aSYN mice had significantly lower plasmatic levels of insulin and leptin than control animals. Moreover, the pathological accumulation of alpha-synuclein in the hypothalamus of 6-month-old Thy1-aSYN mice was associated with a down-regulation of the phosphorylated active form of the signal transducer and activator of transcription 3 (STAT3) and of Rictor (the mTORC2 signaling pathway), known to couple hormonal signals with the maintenance of metabolic and energy homeostasis. Collectively, our results suggest that (i) metabolic alterations are an important phenotype of alpha-synuclein overexpression in mice and that (ii) impaired STAT3 activation and mTORC2 levels in the hypothalamus may underlie the disruption of feeding regulation and energy metabolism in Thy1-aSYN mice.

5.
Artigo em Inglês | MEDLINE | ID: mdl-28674519

RESUMO

The neuropeptide somatostatin (SOM) is widely expressed in rodent brain and somatostatin-IRES-Cre (SOM-cre) mouse strains are increasingly used to unravel the physiology of SOM-containing neurons. However, while knock-in targeting strategy greatly improves Cre-Lox system accuracy, recent reports have shown that genomic insertion of Cre construct per se can markedly affect physiological function. We show that Cre transgene insertion into the 3'UTR of the somatostatin gene leads to the selective and massive depletion of endogenous SOM in all tested brain regions. It also strongly impacts SOM-related neuroendocrine responses in a similar manner to what has been reported for SST KO mice: increased corticosterone levels after 30-min restraint stress, decreased amplitude and regularity of ultradian growth hormone secretory patterns accompanied by changes in sexually dimorphic liver gene expression (serpina1, Cyp2b9, Cyp2a4, Cyp2d9, and Cyp7b1). In addition to demonstrating the need for examination of the consequences of Cre transgenesis, these results also reveal how this SOM-cre strain may be a useful tool in studying the functional consequences of moderate to low SOM levels as reported in neurological and psychiatric disorders.

6.
Biol Aujourdhui ; 210(4): 237-257, 2016.
Artigo em Francês | MEDLINE | ID: mdl-28327282

RESUMO

Ghrelin is a 28 amino acid peptide hormone synthesized within the gastrointestinal tract. Initially identified as the endogenous ligand of the GHS-R1a (Growth Hormone Secretagogue Receptor 1a), ghrelin is a powerful stimulator of growth hormone (GH) secretion. At the crossroad between nutrition, growth and long-term energy metabolism, ghrelin also plays a unique role as the first identified gastric hormone increasing appetite and adiposity. However, the role of the ghrelin/GHS-R system in the physiology of growth, feeding behaviour and energy homeostasis needs to be better understood. Utilization of pharmacological tools and complementary animal models with deficiency in preproghrelin, ghrelin-O-acyl-transferase (GOAT - the enzyme that acylates ghrelin -) or GHS-R in situations of chronic undernutrition or high fat diet gives a more precise overview of the role of ghrelin in the pathophysiology of eating and metabolic disorders.


Assuntos
Regulação do Apetite , Grelina/fisiologia , Crescimento e Desenvolvimento , Animais , Regulação do Apetite/genética , Metabolismo Energético/genética , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Mucosa Gástrica/metabolismo , Hormônios Gastrointestinais/fisiologia , Grelina/metabolismo , Crescimento e Desenvolvimento/genética , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo
7.
Mol Cell Endocrinol ; 438: 42-51, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27693419

RESUMO

Among the gastrointestinal hormones that regulate food intake and energy homeostasis, ghrelin plays a unique role as the first one identified to increases appetite and stimulate GH secretion. This review highlights the latest mechanism by which ghrelin modulates body growth, appetite and energy metabolism by exploring pharmacological actions of the hormone and consequences of genetic or pharmacological blockade of the ghrelin/GHS-R (Growth Hormone Secretagogue Receptor) system on physiological responses in specific nutritional situations. Within the hypothalamus, novel mechanisms of action of this hormone involve its interaction with other ghrelin-derived peptides, such as desacyl ghrelin and obestatin, which are thought to act as functional ghrelin antagonists, and possible modulation of the GHS-R with other G-protein coupled receptors. During chronic undernutrition such as anorexia nervosa, variations of ghrelin-derived peptides may be an adaptative metabolic response to maintain normal glycemic control. Interestingly, some of ghrelin's metabolic actions are thought to be relayed through modulation of GH, an anabolic and hyperglycemic agent.


Assuntos
Apetite/efeitos dos fármacos , Grelina/farmacologia , Crescimento e Desenvolvimento/efeitos dos fármacos , Hipotálamo/metabolismo , Desnutrição/metabolismo , Estado Nutricional/efeitos dos fármacos , Animais , Humanos , Hipotálamo/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-25386163

RESUMO

Psychiatric disorders are often associated with metabolic and hormonal alterations, including obesity, diabetes, metabolic syndrome as well as modifications in several biological rhythms including appetite, stress, sleep-wake cycles, and secretion of their corresponding endocrine regulators. Among the gastrointestinal hormones that regulate appetite and adapt the metabolism in response to nutritional, hedonic, and emotional dysfunctions, at the interface between endocrine, metabolic, and psychiatric disorders, ghrelin plays a unique role as the only one increasing appetite. The secretion of ghrelin is altered in several psychiatric disorders (anorexia, schizophrenia) as well as in metabolic disorders (obesity) and in animal models in response to emotional triggers (psychological stress …) but the relationship between these modifications and the physiopathology of psychiatric disorders remains unclear. Recently, a large literature showed that this key metabolic/endocrine regulator is involved in stress and reward-oriented behaviors and regulates anxiety and mood. In addition, preproghrelin is a complex prohormone but the roles of the other ghrelin-derived peptides, thought to act as functional ghrelin antagonists, are largely unknown. Altered ghrelin secretion and/or signaling in psychiatric diseases are thought to participate in altered appetite, hedonic response and reward. Whether this can contribute to the mechanism responsible for the development of the disease or can help to minimize some symptoms associated with these psychiatric disorders is discussed in the present review. We will thus describe (1) the biological actions of ghrelin and ghrelin-derived peptides on food and drugs reward, anxiety and depression, and the physiological consequences of ghrelin invalidation on these parameters, (2) how ghrelin and ghrelin-derived peptides are regulated in animal models of psychiatric diseases and in human psychiatric disorders in relation with the GH axis.

9.
Endocrinology ; 155(9): 3561-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24949662

RESUMO

Ghrelin is a gut hormone processed from the proghrelin peptide acting as the endogenous ligand of the GH secretagogue receptor 1a. The regulatory role of endogenous ghrelin on pulsatile GH secretion and linear growth had to be established. The aim of the present study was to delineate the endogenous actions of preproghrelin on peripheral and central components of the GH axis. Accordingly, the ultradian pattern of GH secretion was measured in young and old preproghrelin-deficient males. Blood samples were collected by tail bleeding every 10 minutes over a period of 6 hours. Analysis of the GH pulsatile pattern by deconvolution showed that GH was secreted in an ultradian manner in all genotypes, with major secretory peaks occurring at about 3-hour intervals. In older mice, the peak number was reduced and secretion was less irregular compared with younger animals. Remarkably, in young Ghrl(-/-) mice, the amplitude of GH secretory bursts was significantly reduced. In older mice, however, genotype differences were less significant. Changes in GH pulsatility in young Ghrl(-/-) mice were associated with a tendency for reduced GH pituitary contents and plasma IGF-I concentrations, but with only a minor impact on linear growth. In Ghrl(+/-) mice, despite reduced Acyl ghrelin to des-acyl ghrelin ratio, GH secretion was not impaired. Ghrelin deficiency was not associated with a reduction in hypothalamic GHRH content or altered response to GHRH stimulation. Therefore, reduction in GHRH production and/or sensitivity do not primarily account for the altered GH pulsatile secretion of young Ghrl(-/-) mice. Instead, GHRH expression was elevated in young but not old Ghrl(-/-) mice, suggesting that differential compensatory responses resulting from the absence of endogenous ghrelin is occurring according to age. These results show that endogenous ghrelin is a regulator of GH pulse amplitude in growing mice but does not significantly modulate linear growth.


Assuntos
Grelina/deficiência , Hormônio do Crescimento/metabolismo , Camundongos/crescimento & desenvolvimento , Camundongos/metabolismo , Precursores de Proteínas/metabolismo , Animais , Grelina/genética , Masculino , Camundongos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Precursores de Proteínas/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-23515849

RESUMO

The stimulatory effects of ghrelin, a 28-AA acylated peptide originally isolated from stomach, on growth hormone (GH) secretion and feeding are exclusively mediated through the growth hormone secretagogue 1a receptor (GHS-R1a), the only ghrelin receptor described so far. Several GHS-R1a agonists and antagonists have been developed to treat metabolic or nutritional disorders but their mechanisms of action in the central nervous system remain poorly understood. In the present study, we compared the activity of BIM-28163, a GHS-R1a antagonist, and of several agonists, including native ghrelin and the potent synthetic agonist, BIM-28131, to modulate food intake, GH secretion, and cFos activity in arcuate nucleus (ArcN), nucleus tractus solitarius (NTS), and area postrema (AP) in wild-type and NPY-GFP mice. BIM-28131 was as effective as ghrelin in stimulating GH secretion, but more active than ghrelin in inducing feeding. It stimulated cFos activity similarly to ghrelin in the NTS and AP but was more powerful in the ArcN, suggesting that the super-agonist activity of BIM-28131 is mostly mediated in the ArcN. BIM-28163 antagonized ghrelin-induced GH secretion but not ghrelin-induced food consumption and cFos activation, rather it stimulated food intake and cFos activity without affecting GH secretion. The level of cFos activation was dependent on the region considered: BIM-28163 was as active as ghrelin in the NTS, but less active in the ArcN and AP. All compounds also induced cFos immunoreactivity in ArcN NPY neurons but BIM-28131 was the most active. In conclusion, these data demonstrate that two peptide analogs of ghrelin, BIM-28163, and BIM-28131, are powerful stimulators of appetite in mice, acting through pathways and key brain regions involved in the control of appetite that are only partially superimposable from those activated by ghrelin. A better understanding of the molecular pathways activated by these compounds could be useful in devising future therapeutic applications, such as for cachexia and anorexia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA