Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 21(2)2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31952130

RESUMO

Understanding the genetic basis of maize grain yield and other traits under low-nitrogen (N) stressed environments could improve selection efficiency. In this study, five doubled haploid (DH) populations were evaluated under optimum and N-stressed conditions, during the main rainy season and off-season in Kenya and Rwanda, from 2014 to 2015. Identifying the genomic regions associated with grain yield (GY), anthesis date (AD), anthesis-silking interval (ASI), plant height (PH), ear height (EH), ear position (EPO), and leaf senescence (SEN) under optimum and N-stressed environments could facilitate the use of marker-assisted selection to develop N-use-efficient maize varieties. DH lines were genotyped with genotyping by sequencing. A total of 13, 43, 13, 25, 30, 21, and 10 QTL were identified for GY, AD ASI, PH, EH, EPO, and SEN, respectively. For GY, PH, EH, and SEN, the highest number of QTL was found under low-N environments. No common QTL between optimum and low-N stressed conditions were identified for GY and ASI. For secondary traits, there were some common QTL for optimum and low-N conditions. Most QTL conferring tolerance to N stress was on a different chromosome position under optimum conditions.


Assuntos
Biomassa , Grão Comestível/genética , Nitrogênio/metabolismo , Estresse Fisiológico , Zea mays/genética , Adaptação Fisiológica/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Genótipo , Quênia , Fenótipo , Locos de Características Quantitativas , Chuva , Ruanda , Estações do Ano , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
2.
Molecules ; 25(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192150

RESUMO

Drought stress is becoming more prevalent with global warming, and has been shown tohave large effects on gluten proteins linked to wheat bread making quality. Likewise, lowtemperature stress can detrimentally affect proteins in wheat. This study was done to determine thedifferential abundance of high molecular weight (HMW) glutenin proteins in a drought and lowtemperature stressed high quality hard red spring wheat cultivar (PAN3478), against a control. Thetreatments were applied in the greenhouse at the soft dough stage. HMW glutenin proteins wereextracted from the flour, and were separated by using two-dimensional gel electrophoresis. Proteinspots that had p values lower than 0.05 and fold values equal to or greater than 1.2 were consideredto be significantly differentially abundant. These proteins were further analyzed by using tandemmass spectrometry. There was a 1.3 to 1.8 fold change in 17 protein spots due to the cold treatment.The drought treatment caused a 1.3 to 3.8 fold change in 19 protein spots. These spots matchedeither HMW or low molecular weight (LMW) glutenin subunits. In the latter case, the C subunits ofLMW glutenins were notably found to be up-regulated under both stress conditions. All the proteinsthat have been identified can directly influence dough characteristics. Data are available viaProteomeXchange with the identifier PXD017578.


Assuntos
Temperatura Baixa , Secas , Proteínas de Plantas/metabolismo , Proteômica , Estresse Fisiológico , Triticum/metabolismo , Sequência de Aminoácidos , Peptídeos/química , Peptídeos/metabolismo , Proteínas de Plantas/química , Estações do Ano
3.
Crit Rev Food Sci Nutr ; 59(8): 1284-1293, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29200311

RESUMO

Micronutrient deficiencies have been identified as major public health problems affecting a large part of the world's population. Biofortification of staple crops like maize has been proposed as one of the most cost effective and feasible approaches to combat micronutrient deficiencies. Studies have shown that provitamin A from biofortified crops is highly bioavailable and has the capacity to improve vitamin A status of vulnerable groups. Most people in sub-Saharan Africa subsist on maize and many people may benefit from consumption of provitamin A carotenoid biofortified maize, especially women and children. With the exception of transgenic golden rice, biofortified crops have received considerable acceptance by most communities. Negative perceptions associated with yellow maize do not affect orange maize, which is, for example, well-liked in rural Zambia. With proper policy frameworks and full commercialization, provitamin A maize can address the problem of vitamin A deficiencies among poor nations with maize-based diets.


Assuntos
Biofortificação , Carotenoides/metabolismo , Países em Desenvolvimento , Alimentos Fortificados , Provitaminas/metabolismo , Vitamina A/metabolismo , Zea mays/química , Criança , Feminino , Humanos , Oryza , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Deficiência de Vitamina A/prevenção & controle , Zea mays/genética
4.
Crit Rev Food Sci Nutr ; 59(21): 3498-3510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29999424

RESUMO

Vitamin A deficiency (VAD) is one of the most prevalent micronutrient deficiencies that disproportionately affects low income populations in developing countries. Traditional breeding and modern biotechnology have significant potential to enhance micronutrient bioavailability in crops through biofortification. Bananas (Musa spp.) are economically important fruit crops grown throughout tropical and sub-tropical regions of the world where VAD is most prevalent. Some banana genotypes are rich in provitamin A carotenoids (pVACs), providing an opportunity to use bananas as a readily available vehicle for provitamin A delivery. This review summarizes the progress made in carotenoid research in bananas relative to banana diversity and the use of conventional breeding and transgenic approaches aimed at banana biofortification to address vitamin A deficiency. Existing reports on sampling strategies, pVAC retention and bioavailability are also evaluated as essential components for a successful banana biofortification effort. The wide variability of pVACs reported in banana cultivars coupled with recent advances in unraveling the diversity and genetic improvement of this globally important but often-neglected staple fruit crop underscores their importance in biofortification schemes.


Assuntos
Biofortificação , Musa , Deficiência de Vitamina A/prevenção & controle , Vitamina A , Humanos , Provitaminas
5.
BMC Genomics ; 18(1): 777, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025420

RESUMO

BACKGROUND: Molecular characterization is important for efficient utilization of germplasm and development of improved varieties. In the present study, we investigated the genetic purity, relatedness and population structure of 265 maize inbred lines from the Ethiopian Institute of Agricultural Research (EIAR), the International Maize and Wheat Improvement Centre (CIMMYT) and the International Institute of Tropical Agriculture (IITA) using 220,878 single nucleotide polymorphic (SNP) markers obtained using genotyping by sequencing (GBS). RESULTS: Only 22% of the inbred lines were considered pure with <5% heterogeneity, while the remaining 78% of the inbred lines had a heterogeneity ranging from 5.1 to 31.5%. Pairwise genetic distances among the 265 inbred lines varied from 0.011 to 0.345, with 89% of the pairs falling between 0.301 and 0.345. Only <1% of the pairs had a genetic distance lower than 0.200, which included 14 pairs of sister lines that were nearly identical. Relative kinship analysis showed that the kinship coefficients for 59% of the pairs of lines was close to zero, which agrees with the genetic distance estimates. Principal coordinate analysis, discriminant analysis of principal components (DAPC) and the model-based population structure analysis consistently suggested the presence of three groups, which generally agreed with pedigree information (genetic background). Although not distinct enough, the SNP markers showed some level of separation between the two CIMMYT heterotic groups A and B established based on pedigree and combining ability information. CONCLUSIONS: The high level of heterogeneity detected in most of the inbred lines suggested the requirement for purification or further inbreeding except those deliberately maintained at early inbreeding level. The genetic distance and relative kinship analysis clearly indicated the uniqueness of most of the inbred lines in the maize germplasm available for breeders in the mid-altitude maize breeding program of Ethiopia. Results from the present study facilitate the maize breeding work in Ethiopia and germplasm exchange among breeding programs in Africa. We suggest the incorporation of high density molecular marker information in future heterotic group assignments.


Assuntos
Adaptação Fisiológica/genética , Altitude , Umidade , Endogamia , Polimorfismo de Nucleotídeo Único , Zea mays/genética , Zea mays/fisiologia , Marcadores Genéticos/genética , Genótipo , Técnicas de Genotipagem
6.
Breed Sci ; 66(3): 434-43, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27436954

RESUMO

Efforts are underway to develop staple crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency (VAD), which has afflicted the health of resource-poor people in the developing world. As a staple crop for more than 500 million people in sub-Saharan Africa, cassava enriched with provitamin A carotenoids could have a widespread nutritional impact. To this effect, 13 provitamin A clones were evaluated in a randomized complete block design in six environments to assess genotype by environment interaction (GEI) effects for total carotenoid (TCC) and dry matter content (DMC) in roots. Additive main effect and multiplicative interaction analysis showed significant variation among genotypes for TCC, DMC, fresh root weight and harvest index. Environmental effects were non-significant for TCC, but GEI effects were significantly large for all traits measured. There were significant temporal increments for all traits measured within 12 months after planting. TCC correlated negatively with DMC, illustrating an important challenge to overcome when developing provitamin A cassava varieties without compromising DMC, which is a major farmer-preference trait. Nonetheless, best performing genotypes were identified for TCC, DMC and FRW, and these could constitute genetic resources for advancement or developing breeding populations through hybridization.

7.
Breed Sci ; 66(4): 627-635, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795688

RESUMO

Global efforts are underway to biofortify cassava (Manihot esculenta Crantz) with provitamin A carotenoids to help combat dietary vitamin A deficiency afflicting the health of more than 500 million resource-poor people in Sub-Saharan Africa. To further the biofortification initiative in Uganda, a 6×6 diallel analysis was conducted to estimate combining ability of six provitamin A clones and gene actions controlling total carotenoid content (TCC), dry matter content (DMC) in cassava roots and other relevant traits. Fifteen F1 families generated from the diallel crosses were evaluated in two environments using a randomized complete block design. General combining ability (GCA) effects were significant for TCC and DMC, suggesting the relative importance of additive gene effects in controlling these traits in cassava. On the other hand, non-additive effects were predominant for root and shoot weight. MH02-073HS, with the highest level of TCC, was the best general combiner for TCC while NASE 3, a popular white-fleshed variety grown by farmers in Uganda, was the best general combiner for DMC. Such progenitors with superior GCA effects could form the genetic source for future programs targeting cassava breeding for TCC and DMC. A negative correlation was observed between TCC and DMC, which will require breeding strategies to combine both traits for increased adoption of provitamin A cassava varieties.

8.
BMC Genomics ; 16: 908, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26545737

RESUMO

BACKGROUND: Quality control (QC) analysis is an important component in maize breeding and seed systems. Genotyping by next-generation sequencing (GBS) is an emerging method of SNP genotyping, which is being increasingly adopted for discovery applications, but its suitability for QC analysis has not been explored. The objectives of our study were 1) to evaluate the level of genetic purity and identity among two to nine seed sources of 16 inbred lines using 191 Kompetitive Allele Specific PCR (KASP) and 257,268 GBS markers, and 2) compare the correlation between the KASP-based low and the GBS-based high marker density on QC analysis. RESULTS: Genetic purity within each seed source varied from 49 to 100% for KASP and from 74 to 100% for GBS. All except one of the inbred lines obtained from CIMMYT showed 98 to 100% homogeneity irrespective of the marker type. On the contrary, only 16 and 21% of the samples obtained from EIAR and partners showed ≥95% purity for KASP and GBS, respectively. The genetic distance among multiple sources of the same line designation varied from 0.000 to 0.295 for KASP and from 0.004 to 0.230 for GBS. Five lines from CIMMYT showed ≤ 0.05 distance among multiple sources of the same line designation; the remaining eleven inbred lines, including two from CIMMYT and nine from Ethiopia showed higher than expected genetic distances for two or more seed sources. The correlation between the 191 KASP and 257,268 GBS markers was 0.88 for purity and 0.93 for identity. A reduction in the number of GBS markers to 1,343 decreased the correlation coefficient only by 0.03. CONCLUSIONS: Our results clearly showed high discrepancy both in genetic purity and identity by the origin of the seed sources (institutions) irrespective of the type of genotyping platform and number of markers used for analyses. Although there were some numerical differences between KASP and GBS, the overall conclusions reached from both methods was basically similar, which clearly suggests that smaller subset of preselected and high quality markers are sufficient for QC analysis that can easily be done using low marker density genotyping platforms, such as KASP. Results from this study would be highly relevant for plant breeders and seed system specialists.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Zea mays/genética , Alelos , Genótipo
9.
Appl Radiat Isot ; 207: 111279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461628

RESUMO

The absence of genetic variability among crop genotypes is an impediment to breeding progress, hence mutagenesis could serve as a useful tool to create genetic variation to obtain desirable traits of interest. In this study, four maize genotypes, Obatampa, Dapango, Pann 54 and Honampa which were susceptible to maize streak disease (MSD) were acutely irradiated at 254.3 Gy, using a cobalt 60 (60Co) at a rate of 300 Gy/hr. The irradiated seeds were planted with their parental controls at streak disease highly endemic environment. Field trials for the selected maize genotypes were conducted from the M1 to M4 generations to screen for MSD resistance and improved grain yield. Sixteen putative mutants and four individual parental controls were selected across the four maize genotypes at the end of the M4 generation based on disease severity score and yield indices. Detailed morphological screening and field evaluation of putative mutants showing improved plant architecture, increased grain yield and resistance to maize streak disease were tagged and selected. Obatanpa-induced-genotype was the best mutant identified with a grain yield of 6.8 t ha-1. Data on days to 50% flowering indicated that all 16 putative mutants were maturing plants.


Assuntos
Sementes , Zea mays , Zea mays/genética , Genótipo , Fenótipo , Sementes/genética , Grão Comestível
10.
J Sci Food Agric ; 93(7): 1610-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23132727

RESUMO

BACKGROUND: As eating quality is important for adoption of new varieties, nine orange-fleshed and three cream-fleshed sweet potato varieties were assessed for sensory characteristics, dry mass and free sugar content, instrumental texture and colour and consumer acceptability (n = 216) in a peri-urban South African setting. RESULTS: Cream-fleshed varieties were higher in yellow-green colour and sweet potato-like flavour and lower in graininess. Orange-fleshed varieties were higher in pumpkin-like flavour, orange colour, discolouration and sucrose content. Partial least squares regression analysis showed that the most accepted varieties (Impilo, Excel, Resisto, 2001_5_2, Serolane, W-119 and Monate) were associated with sweet flavour, dry mass and maltose content, while the least accepted varieties (Beauregard, Khano and 1999_1_7) were associated with wateriness. Pearson correlation analysis highlighted correlations of sensory attributes yellow and orange with instrumental colour measurements (colour a* and colour b*), instrumental firmness with sensory firmness, dry mass with sensory wateriness, and maltose content with sensory sweet and sweet potato-like flavour. The varieties were clustered into three groups. Consumer acceptability for eating quality correlated with maltose content, dry mass and sweet flavour. CONCLUSION: Chemical and instrumental measurements were identified to evaluate key attributes and will be useful in the intermediate phases of sweet potato varietal development.


Assuntos
Comportamento do Consumidor , Preferências Alimentares , Qualidade dos Alimentos , Ipomoea batatas/química , Maltose/análise , Paladar , Água/análise , Cor , Dieta , Sacarose Alimentar/análise , Dureza , Humanos , Ipomoea batatas/classificação , Análise dos Mínimos Quadrados , Tubérculos/química , África do Sul , Especificidade da Espécie
11.
Emerg Top Life Sci ; 7(2): 219-227, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37962270

RESUMO

Crop biofortification has significantly progressed in the last few decades. The first biofortification success was quality protein maize, leading to double the amount of the essential amino acids lysine and tryptophan. This was followed by biofortification of staple crops such as maize, wheat, rice, legumes and cassava for nutrients such as Fe and Zn and provitamin A. These crops have reached millions of households, especially in the developing regions of the world. The development and release of these biofortified crops through conventional breeding generally took 8-10 years. To speed up the process, molecular markers, genome-wide association studies and genomic selection have been incorporated into breeding efforts. Genetic engineering has the potential to increase the efficiency of crop biofortification through multi-nutrient biofortification in a short timespan and to combine biofortification with climate resilience. Regulatory issues still prevent the dissemination of genetically modified crops in many countries. This could be overcome by CRISPR-Cas-mediated genome editing, as it seems that many countries will regulate products of genome editing less strictly than transgenic crops. Effective policies on national or regional level are needed for the sustainable production of biofortified crops. The availability of affordable quality biofortified seed and other inputs should be ensured through local seed systems, which will increase the production and adoption of biofortified crops. There is scope to expand the crops and the range of nutrients for biofortification. Genetic engineering should be combined with conventional breeding as a approach for future improvement of multi-nutrient crops.


Assuntos
Biofortificação , Alimentos Fortificados , Produtos Agrícolas/genética , Estudo de Associação Genômica Ampla , Plantas Geneticamente Modificadas , Melhoramento Vegetal , Segurança Alimentar
12.
Life (Basel) ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37240723

RESUMO

During drought stress, many enzymes are inactivated in plants due to Zn deficiency. Zn application and arbuscular mycorrhiza fungi (AMF)-wheat symbiosis reportedly improve the tolerance of plants to drought stress. This study was done to investigate the effect of Zn and AMF on plant growth, yield attributes, relative water content (RWC), harvest index (HI), photosynthetic activity, solute accumulation, glycine betaine (GB) accumulation, antioxidant activities [(catalase (CAT) and superoxide dismutase (SOD)], and ionic attributes in a bread wheat cultivar (SST806) under drought-stress in plants grown under greenhouse conditions. Zn application and AMF inoculation, separately and combined, enhanced all plant growth parameters and yield. Root dry weight (RDW) was increased by 25, 30, and 46% for these three treatments, respectively, under drought conditions compared to the control treatment. Overall, Zn application, AMF inoculation, and their combination increased protein content, RWC, and harvest index (HI) under drought stress. However, AMF inoculation improved proline content more than Zn application under the same conditions. Regarding GB accumulation, AMF, Zn, and the combination of Zn and AMF increased GB under drought compared to well-watered conditions by 31.71, 10.36, and 70.70%, respectively. For the antioxidant defense, AMF inoculation and Zn application improved SOD and CAT activity by 58 and 56%, respectively. This study showed that Zn and/or AMF increased antioxidant levels and ionic attributes under abiotic stress.

13.
Front Plant Sci ; 14: 1070302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760637

RESUMO

While significant progress has been made by several international breeding institutions in improving maize nutritional quality, stacking of nutritional traits like zinc (Zn), quality protein, and provitamin A has not received much attention. In this study, 11 newly introduced Zn-enhanced inbred lines were inter-mated with seven testers from normal, provitamin A and quality protein maize (QPM) nutritional backgrounds in order to estimate the general combining ability (GCA) and specific combining ability (SCA) for grain yield (GY) and secondary traits under stress conditions [(combined heat and drought stress (HMDS) and managed low nitrogen (LN)] and non-stress conditions [(summer rainfed; OPT) and well-watered (irrigated winter; WW)] in Zimbabwe. Lines L6 and L7 had positive GCA effects for GY and secondary traits under OPT and LN conditions, and L8 and L9 were good general combiners for GY under HMDS conditions. Superior hybrids with high GY and desirable secondary traits were identified as L10/T7 and L9/T7 (Zn x normal), L2/T4, L4/T4, L3/T5 (Zn x provitamin A), and L8/T6 and L11/T3 (Zn x QPM), suggesting the possibility of developing Zn-enhanced hybrids with high yield potential using different nutritional backgrounds. Both additive and dominance gene effects were important in controlling most of the measured traits. This suggests that selecting for desirable traits during inbred line development followed by hybridization and testing of specific crosses under different management conditions could optimize the breeding strategy for stacked nutritionally-enhanced maize genotypes.

14.
Plants (Basel) ; 12(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050089

RESUMO

Maize is the staple food crop for millions of people in sub-Saharan Africa. Iron (Fe) and zinc (Zn) deficiency is a significant health risk that mainly affects low-income populations who rely solely on maize-based diets. This problem can be alleviated by developing micronutrient-rich maize grain. The aim of this study was to determine the adaptation and performance of hybrids for Fe and Zn concentration and grain yield under low soil nitrogen (N) and optimal conditions. Eighteen hybrids derived from lines and testers with low, medium, and high Fe and Zn concentration were grown during the summer rainy seasons of 2017 and 2018 at three locations under low and optimal N conditions. There were significant genotype and environment effects for grain yield, and Fe and Zn concentration, but the genotype by environment interaction effects were the largest, accounting for between 36% and 56% of variation under low N conditions. Low N levels significantly reduced grain yield, and Fe and Zn concentration. Hybrids G1, G2, G4, G7, G10, G11, and G16 were relatively stable, with relatively high mean Fe and Zn concentrations, and low additive main effects and multiplicative interaction (AMMI) stability values and iron stability index (FSI) and zinc stability index (ZSI) under low N conditions. These genotypes can be considered for production under low N stress conditions. Two environments (E4 and E3) were identified for good discriminatory power for genotype performance in terms of Fe and Zn content, respectively. Stable and high-yielding genotypes with high Fe and Zn concentration can be used as biofortified hybrids, which can contribute to a sustainable solution to malnutrition in the region, especially under low N conditions.

15.
Heliyon ; 9(3): e14177, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915538

RESUMO

Iron (Fe) and zinc (Zn) nutrient enrichment of staple crops through biofortification can contribute to alleviating micronutrient deficiency in sub-Saharan Africa. A line × tester mating design was used to determine the general combining ability (GCA), specific combining ability (SCA) and heterosis for grain yield, iron, Zn and phytic concentration of six lines crossed with three testers. Lines and testers were selected for high, intermediate and low mineral content. The F1 hybrids and parental lines were evaluated under low nitrogen (N) and optimum conditions across four environments over two seasons. Under low N conditions, Fe and Zn concentration in grain, and grain yield of genotypes were reduced by 9%, 9%, and 59%, respectively. However, phytic acid concentration in grain was increased by 10% under low N conditions. Both additive and non-additive gene effects were important in controlling Fe, Zn and phytic acid concentration in grain and grain yield of maize under both N conditions. The preponderance of GCA effects indicates the importance of additive gene effects in the inheritance of grain yield. Line GCA effects were more sensitive to N conditions across the environments than the tester GCA. High and significant positive SCA effects for grain yield, Fe and Zn content under low N conditions, would be a good indicator of possible heterosis in these traits. Hybrid CBY101 LM-1600 × CBY358 LM-1857 had high and significant positive SCA for grain yield under low N conditions and is a promising candidate for production in low N environments. CBY358 LM-1857 (tester) and CBY102 LM-1601 (line) are a good general combiners for Fe, Zn and GY can be used as parents in future maize hybrid breeding programs to develop high-yielding maize genotypes with high Fe and Zn content.

16.
Heliyon ; 9(11): e21660, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027714

RESUMO

Maize is one of the most important staple food crops for most low-income households in the Southern African region. Erratic and inconsistent rainfall distribution across maize-growing areas is a major threat to maize production. Late rains in recent years have forced farmers to plant later than the optimal planting dates, leading to poor maize quality being reported by industry, which raised the question of the influence of later planting dates on grain yield and quality traits of maize. Three yellow and three white maize hybrids were evaluated at three planting dates in three different production environments for three consecutive seasons using a randomized complete block design with three replications. The second and third planting dates caused a significant yield decrease of 23.37 % and 53.73 % from the first planting date across environments, respectively. Planting date three was associated with decreased grain yield, starch content, and increased protein but no significant change in fat and fiber content. Some hybrids yielded relatively well at all planting dates. In conclusion, the early planting date was the most suitable for maize grain yield and starch production in the maize-growing areas of the country. However, planting in January should be avoided at all costs, as it leads to very low yield and poor grain quality.

17.
Plants (Basel) ; 12(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36678983

RESUMO

The negative impacts of zinc (Zn) and iron (Fe) deficiency due to over-reliance on monotonous cereal-based diets are well-documented. Increasing micronutrient densities in maize is currently among top breeders' priorities. Here, 77 single-cross Zn-enhanced hybrids with normal, provitamin A and quality protein maize genetic backgrounds were evaluated together with seven checks for grain Zn and Fe concentration and agronomic traits under optimum, low nitrogen (N) and managed drought conditions. Results showed a fairly wide variability for grain Zn (10.7-57.8 mg kg-1) and Fe (7.1-58.4 mg kg-1) concentration amongst the hybrids, across management conditions. Notable differences in Zn concentration were observed between the Zn-enhanced quality protein maize (QPM) (31.5 mg kg-1), Zn-enhanced provitamin A maize (28.5 mg kg-1), Zn-enhanced normal maize (26.0 mg kg-1) and checks (22.9 mg kg-1). Although checks showed the lowest micronutrient concentration, they were superior in grain yield (GY) performance, followed by Zn-enhanced normal hybrids. Genotypes grown optimally had higher micronutrient concentrations than those grown under stress. Genotype × environment interaction (G × E) was significant (p ≤ 0.01) for GY, grain Zn and Fe concentration, hence micronutrient-rich varieties could be developed for specific environments. Furthermore, correlation between grain Zn and Fe was positive and highly significant (r = 0.97; p ≤ 0.01) suggesting the possibility of improving these traits simultaneously. However, the negative correlation between GY and grain Zn (r = -0.44; p ≤ 0.01) and between GY and grain Fe concentration (r = -0.43; p ≤ 0.01) was significant but of moderate magnitude, suggesting slight dilution effects. Therefore, development of high yielding and micronutrient-dense maize cultivars is possible, which could reduce the highly prevalent micronutrient deficiency in sub-Saharan Africa (SSA).

18.
Foods ; 11(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406985

RESUMO

Malnutrition, as a result of deficiency in essential nutrients in cereal food products and consumption of a poorly balanced diet, is a major challenge facing millions of people in developing countries. However, developing maize inbred lines that are high yielding with enhanced nutritional traits for hybrid development remains a challenge. This study evaluated 40 inbred lines: 26 quality protein maize (QPM) lines, nine non-QPM lines, and five checks (three QPM lines and two non-QPM lines) in four optimum environments in Zimbabwe and South Africa. The objective of the study was to identify good-quality QPM inbred lines for future hybrid breeding efforts in order to increase the nutritional value of maize. The QPM lines had a lower protein content (7% lower) than that of the non-QPM lines but had 1.9 times more tryptophan and double the quality index. The lysine- and tryptophan-poor α-zein protein fraction was 41% lower in QPM than in non-QPM, with a subsequent increase in γ-zein. There was significant variation within the QPM inbred lines for all measured quality characteristics, indicating that the best lines can be selected from this material without a yield penalty. QPM lines that had both high protein and tryptophan levels, which can be used as parents for highly nutritious hybrids, were identified.

19.
Plants (Basel) ; 11(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890487

RESUMO

Abiotic constraints such as salinity stress reduce cereal production. Salicylic acid is an elicitor of abiotic stress tolerance in plants. The aim of this study was to investigate the effects of salicylic acid on two bread wheat cultivars (SST806 and PAN3497) grown under salt stress (100 and 200 mM NaCl) in the presence and absence of 0.5 mM salicylic acid. The highest salt concentration (200 mM), in both PAN3497 and SST806, increased the days to germination and reduced the coleoptile and radicle dry weights. The shoot dry weight was reduced by 75 and 39%, root dry weight by 73 and 37%, spike number of both by 50%, spike weight by 73 and 54%, grain number by 62 and 15%, grain weight per spike by 80 and 45%, and 1000 grain weight by 9 and 29% for 200 and 100 mM NaCl, respectively. Salicylic acid in combination with 100 mM and 200 mM NaCl increased the shoot, root, and yield attributes. Salicylic acid increased the grain protein content, especially at 200 mM NaCl, and the increase was higher in SST806 than PAN3497. The macro-mineral concentration was markedly increased by an increase of NaCl. This was further increased by salicylic acid treatment for both SST806 and PAN3497. Regarding micro-minerals, Na was increased more than the other minerals in both cultivars. Mn, Zn, Fe, and Cu were increased under 100 mM and 200 Mm of salt, and salicylic acid application increased these elements further in both cultivars. These results suggested that salicylic acid application improved the salt tolerance of these two bread wheat cultivars.

20.
Plants (Basel) ; 11(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35736733

RESUMO

Currently, the world population is increasing, and humanity is facing food and nutritional scarcity. Climate change and variability are a major threat to global food and nutritional security, reducing crop productivity in the tropical and subtropical regions of the globe. Cowpea has the potential to make a significant contribution to global food and nutritional security. In addition, it can be part of a sustainable food system, being a genetic resource for future crop improvement, contributing to resilience and improving agricultural sustainability under climate change conditions. In malnutrition prone regions of sub-Saharan Africa (SSA) countries, cowpea has become a strategic dryland legume crop for addressing food insecurity and malnutrition. Therefore, this review aims to assess the contribution of cowpea to SSA countries as a climate-resilient crop and the existing production challenges and perspectives. Cowpea leaves and immature pods are rich in diverse nutrients, with high levels of protein, vitamins, macro and micronutrients, minerals, fiber, and carbohydrates compared to its grain. In addition, cowpea is truly a multifunctional crop for maintaining good health and for reducing non-communicable human diseases. However, as a leafy vegetable, cowpea has not been researched and promoted sufficiently because it has not been promoted as a food security crop due to its low yield potential, susceptibility to biotic and abiotic stresses, quality assurance issues, policy regulation, and cultural beliefs (it is considered a livestock feed). The development of superior cowpea as a leafy vegetable can be approached in different ways, such as conventional breeding and gene stacking, speed breeding, mutation breeding, space breeding, demand-led breeding, a pan-omics approach, and local government policies. The successful breeding of cowpea genotypes that are high-yielding with a good nutritional value as well as having resistance to biotics and tolerant to abiotic stress could also be used to address food security and malnutrition-related challenges in sub-Saharan Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA