Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748538

RESUMO

Group A Streptococcus (GAS) M and M-like proteins are essential virulence factors and represent the primary epidemiological marker of this pathogen. Protein sequences encoding 1054 M, Mrp and Enn proteins, from 1668 GAS genomes, were analysed by SplitsTree4, partitioning around medoids and co-occurrence. The splits network and groups-based analysis of all M and M-like proteins revealed four large protein groupings, with multiple evolutionary histories as represented by multiple edges for most splits, leading to 'M-family-groups' (FG) of protein sequences: FG I, Mrp; FG II, M protein and Protein H; FG III, Enn; and FG IV, M protein. M and Enn proteins formed two groups with nine sub-groups and Mrp proteins formed four groups with ten sub-groups. Discrete co-occurrence of M and M-like proteins were identified suggesting that while dynamic, evolution may be constrained by a combination of functional and virulence attributes. At a granular level, four distinct family-groups of M, Enn and Mrp proteins are observable, with Mrp representing the most genetically distinct of the family-group of proteins. While M and Enn protein families generally group into three distinct family-groups, horizontal and vertical gene flow between distinct GAS strains is ongoing.


Assuntos
Proteínas de Bactérias , Streptococcus pyogenes , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Fatores de Virulência/genética
2.
PLoS Comput Biol ; 16(6): e1007182, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32502148

RESUMO

Group A Streptococcus (GAS) skin infections are caused by a diverse array of strain types and are highly prevalent in disadvantaged populations. The role of strain-specific immunity in preventing GAS infections is poorly understood, representing a critical knowledge gap in vaccine development. A recent GAS murine challenge study showed evidence that sterilising strain-specific and enduring immunity required two skin infections by the same GAS strain within three weeks. This mechanism of developing enduring immunity may be a significant impediment to the accumulation of immunity in populations. We used an agent-based mathematical model of GAS transmission to investigate the epidemiological consequences of enduring strain-specific immunity developing only after two infections with the same strain within a specified interval. Accounting for uncertainty when correlating murine timeframes to humans, we varied this maximum inter-infection interval from 3 to 420 weeks to assess its impact on prevalence and strain diversity, and considered additional scenarios where no maximum inter-infection interval was specified. Model outputs were compared with longitudinal GAS surveillance observations from northern Australia, a region with endemic infection. We also assessed the likely impact of a targeted strain-specific multivalent vaccine in this context. Our model produced patterns of transmission consistent with observations when the maximum inter-infection interval for developing enduring immunity was 19 weeks. Our vaccine analysis suggests that the leading multivalent GAS vaccine may have limited impact on the prevalence of GAS in populations in northern Australia if strain-specific immunity requires repeated episodes of infection. Our results suggest that observed GAS epidemiology from disease endemic settings is consistent with enduring strain-specific immunity being dependent on repeated infections with the same strain, and provide additional motivation for relevant human studies to confirm the human immune response to GAS skin infection.


Assuntos
Dermatopatias/epidemiologia , Infecções Estreptocócicas/epidemiologia , Streptococcus pyogenes , Animais , Austrália/epidemiologia , Austrália/etnologia , Número Básico de Reprodução , Modelos Animais de Doenças , Humanos , Camundongos , Modelos Teóricos , Dinâmica Populacional , Grupos Populacionais , Dermatopatias/imunologia , Dermatopatias/microbiologia , Dermatopatias/prevenção & controle , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas
3.
J Infect Dis ; 221(9): 1429-1437, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-31748786

RESUMO

Group A Streptococcus is a pathogen of global importance, but despite the ubiquity of group A Streptococcus infections, the relationship between infection, colonization, and immunity is still not completely understood. The M protein, encoded by the emm gene, is a major virulence factor and vaccine candidate and forms the basis of a number of classification systems. Longitudinal patterns of emm types collected from 457 Fijian schoolchildren over a 10-month period were analyzed. No evidence of tissue tropism was observed, and there was no apparent selective pressure or constraint of emm types. Patterns of emm type acquisition suggest limited, if any, modification of future infection based on infection history. Where impetigo is the dominant mode of transmission, circulating emm types either may not be constrained by ecological niches or population immunity to the M protein, or they may require several infections over a longer period of time to induce such immunity.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Transporte/imunologia , Dermatopatias Bacterianas/imunologia , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Adolescente , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Criança , Pré-Escolar , Feminino , Fiji/epidemiologia , Humanos , Estudos Longitudinais , Masculino , Dermatopatias Bacterianas/epidemiologia , Infecções Estreptocócicas/epidemiologia , Estudantes
4.
BMC Genomics ; 19(1): 379, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29788909

RESUMO

BACKGROUND: Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome. RESULTS: Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis. CONCLUSIONS: The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal gene transfer appears to play a significant role in genetic variation of the C. perfringens chromosome as well as the plasmid content within strains.


Assuntos
Clostridium perfringens/genética , Clostridium perfringens/fisiologia , Enterite/microbiologia , Evolução Molecular , Variação Genética , Animais , Galinhas/microbiologia , Cromossomos/genética , Enterite/complicações , Necrose/complicações , Plasmídeos/genética
5.
Anaerobe ; 53: 5-10, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29866424

RESUMO

Clostridium perfringens causes many different histotoxic and enterotoxic diseases in humans and animals as a result of its ability to produce potent protein toxins, many of which are extracellular. The current scheme for the classification of isolates was finalized in the 1960s and is based on their ability to produce a combination of four typing toxins - α-toxin, ß-toxin, ε-toxin and ι-toxin - to divide C. perfringens strains into toxinotypes A to E. However, this scheme is now outdated since it does not take into account the discovery of other toxins that have been shown to be required for specific C. perfringens-mediated diseases. We present a long overdue revision of this toxinotyping scheme. The principles for the expansion of the typing system are described, as is a mechanism by which new toxinotypes can be proposed and subsequently approved. Based on these criteria two new toxinotypes have been established. C. perfringens type F consists of isolates that produce C. perfringens enterotoxin (CPE), but not ß-toxin, ε-toxin or ι-toxin. Type F strains will include strains responsible for C. perfringens-mediated human food poisoning and antibiotic associated diarrhea. C. perfringens type G comprises isolates that produce NetB toxin and thereby cause necrotic enteritis in chickens. There are at least two candidates for future C. perfringens toxinotypes, but further experimental work is required before these toxinotypes can formally be proposed and accepted.


Assuntos
Toxinas Bacterianas/análise , Técnicas de Tipagem Bacteriana/métodos , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Clostridium perfringens/classificação , Animais , Clostridium perfringens/isolamento & purificação , Humanos
6.
Appl Environ Microbiol ; 83(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29030439

RESUMO

Clostridium perfringens is a gastrointestinal pathogen capable of causing disease in a variety of hosts. Necrotic enteritis in chickens is caused by C. perfringens strains that produce the pore-forming toxin NetB, the major virulence factor for this disease. Like many other C. perfringens toxins and antibiotic resistance genes, NetB is encoded on a conjugative plasmid. Conjugative transfer of the netB-containing plasmid pJIR3535 has been demonstrated in vitro with a netB-null mutant. This study has investigated the effect of plasmid transfer on disease pathogenesis, with two genetically distinct transconjugants constructed under in vitro conditions, within the intestinal tract of chickens. This study also demonstrates that plasmid transfer can occur naturally in the host gut environment without the need for antibiotic selective pressure to be applied. The demonstration of plasmid transfer within the chicken host may have implications for the progression and pathogenesis of C. perfringens-mediated disease. Such horizontal gene transfer events are likely to be common in the clostridia and may be a key factor in strain evolution, both within animals and in the wider environment.IMPORTANCEClostridium perfringens is a major gastrointestinal pathogen of poultry. C. perfringens strains that express the NetB pore-forming toxin, which is encoded on a conjugative plasmid, cause necrotic enteritis. This study demonstrated that the conjugative transfer of the netB-containing plasmid to two different nonpathogenic strains converted them into disease-causing strains with disease-causing capability similar to that of the donor strain. Plasmid transfer of netB and antibiotic resistance was also demonstrated to occur within the gastrointestinal tract of chickens, with approximately 14% of the isolates recovered comprising three distinct, in vivo-derived, transconjugant types. The demonstration of in vivo plasmid transfer indicates the potential importance of strain plasticity and the contribution of plasmids to strain virulence.


Assuntos
Galinhas , Infecções por Clostridium/veterinária , Clostridium perfringens/genética , Conjugação Genética , Transferência Genética Horizontal , Doenças das Aves Domésticas/microbiologia , Animais , Infecções por Clostridium/microbiologia , Clostridium perfringens/patogenicidade , Trato Gastrointestinal/microbiologia , Plasmídeos/genética , Virulência
7.
Avian Pathol ; 45(3): 302-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26949841

RESUMO

The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease.


Assuntos
Infecções por Clostridium/veterinária , Clostridium perfringens/genética , Enterite/veterinária , Variação Genética , Doenças das Aves Domésticas/microbiologia , Aves Domésticas/microbiologia , Animais , Toxinas Bacterianas/genética , Técnicas de Tipagem Bacteriana/veterinária , Cromossomos Bacterianos/genética , Infecções por Clostridium/microbiologia , Clostridium perfringens/isolamento & purificação , Eletroforese em Gel de Campo Pulsado/veterinária , Enterite/microbiologia , Enterotoxinas/genética , Genômica , Tipagem de Sequências Multilocus/veterinária , Plasmídeos/genética
8.
Nat Commun ; 15(1): 3477, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658529

RESUMO

Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.


Assuntos
Transferência Genética Horizontal , Sequências Repetitivas Dispersas , Infecções Estreptocócicas , Streptococcus pyogenes , Streptococcus , Streptococcus pyogenes/genética , Streptococcus pyogenes/isolamento & purificação , Streptococcus pyogenes/classificação , Infecções Estreptocócicas/transmissão , Infecções Estreptocócicas/microbiologia , Humanos , Streptococcus/genética , Streptococcus/isolamento & purificação , Sequências Repetitivas Dispersas/genética , Austrália , Genoma Bacteriano/genética , Feminino , Masculino , Criança , Características da Família , Adulto , Pré-Escolar , Adolescente , Estudos Longitudinais , Farmacorresistência Bacteriana/genética , Adulto Jovem
9.
Nat Commun ; 15(1): 2286, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480728

RESUMO

Streptococcus dysgalactiae subsp. equisimilis (SDSE) is an emerging cause of human infection with invasive disease incidence and clinical manifestations comparable to the closely related species, Streptococcus pyogenes. Through systematic genomic analyses of 501 disseminated SDSE strains, we demonstrate extensive overlap between the genomes of SDSE and S. pyogenes. More than 75% of core genes are shared between the two species with one third demonstrating evidence of cross-species recombination. Twenty-five percent of mobile genetic element (MGE) clusters and 16 of 55 SDSE MGE insertion regions were shared across species. Assessing potential cross-protection from leading S. pyogenes vaccine candidates on SDSE, 12/34 preclinical vaccine antigen genes were shown to be present in >99% of isolates of both species. Relevant to possible vaccine evasion, six vaccine candidate genes demonstrated evidence of inter-species recombination. These findings demonstrate previously unappreciated levels of genomic overlap between these closely related pathogens with implications for streptococcal pathobiology, disease surveillance and prevention.


Assuntos
Infecções Estreptocócicas , Streptococcus , Vacinas , Humanos , Streptococcus pyogenes/genética , Fluxo Gênico
10.
Pathology ; 55(5): 656-662, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271611

RESUMO

After introduction of faecal multiplex PCR that includes targets for stx1 and stx2 genes, we found stx genes were detected in 120 specimens from 111 patients over a 31-month period from 2018-2020 from a total of 14,179 separate tests performed. The proportion of stx1 only vs stx2 only vs stx1 and stx2 was 35%, 22% and 42%, respectively. There were 54 specimens which were culture positive, with 33 different serotypes identified, the predominant serotype being O157:H7 (19%). Eighty-two patients had clinical data available; we found a high rate of fever (35%), bloody diarrhoea (34%), acute kidney injury (27%), hospital admission (80%) and detection of faecal co-pathogens (23%). Only one patient developed haemolytic uraemic syndrome. We found no significant association with stx genotype and any particular symptom or complication. We found a significant association of serotypes O157:H7 and O26:H11 with bloody stool, but no significant association with any other symptom or complication.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Gastroenterite , Síndrome Hemolítico-Urêmica , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli O157/genética , Epidemiologia Molecular , Síndrome Hemolítico-Urêmica/diagnóstico , Síndrome Hemolítico-Urêmica/epidemiologia , Gastroenterite/diagnóstico , Gastroenterite/epidemiologia , Fezes , Toxinas Shiga/genética , Escherichia coli Shiga Toxigênica/genética
11.
Lancet Microbe ; 4(7): e524-e533, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211022

RESUMO

BACKGROUND: Streptococcus pyogenes, or group A Streptococcus (GAS), infections contribute to a high burden of disease in Aboriginal Australians, causing skin infections and immune sequelae such as rheumatic heart disease. Controlling skin infections in these populations has proven difficult, with transmission dynamics being poorly understood. We aimed to identify the relative contributions of impetigo and asymptomatic throat carriage to GAS transmission. METHODS: In this genomic analysis, we retrospectively applied whole genome sequencing to GAS isolates that were collected as part of an impetigo surveillance longitudinal household survey conducted in three remote Aboriginal communities in the Northern Territory of Australia between Aug 6, 2003, and June 22, 2005. We included GAS isolates from all throats and impetigo lesions of people living in two of the previously studied communities. We classified isolates into genomic lineages based on pairwise shared core genomes of more than 99% with five or fewer single nucleotide polymorphisms. We used a household network analysis of epidemiologically and genomically linked lineages to quantify the transmission of GAS within and between households. FINDINGS: We included 320 GAS isolates in our analysis: 203 (63%) from asymptomatic throat swabs and 117 (37%) from impetigo lesions. Among 64 genomic lineages (encompassing 39 emm types) we identified 264 transmission links (involving 93% of isolates), for which the probable source was asymptomatic throat carriage in 166 (63%) and impetigo lesions in 98 (37%). Links originating from impetigo cases were more frequent between households than within households. Households were infected with GAS for a mean of 57 days (SD 39 days), and once cleared, reinfected 62 days (SD 40 days) later. Increased household size and community presence of GAS and scabies were associated with slower clearance of GAS. INTERPRETATION: In communities with high prevalence of endemic GAS-associated skin infection, asymptomatic throat carriage is a GAS reservoir. Public health interventions such as vaccination or community infection control programmes aimed at interrupting transmission of GAS might need to include consideration of asymptomatic throat carriage. FUNDING: Australian National Health and Medical Research Council.


Assuntos
Impetigo , Dermatopatias Infecciosas , Infecções Estreptocócicas , Humanos , Impetigo/epidemiologia , Streptococcus pyogenes/genética , Estudos Retrospectivos , Faringe , Northern Territory/epidemiologia , Infecções Estreptocócicas/epidemiologia , Genômica
12.
Nat Commun ; 14(1): 1051, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828918

RESUMO

A new variant of Streptococcus pyogenes serotype M1 (designated 'M1UK') has been reported in the United Kingdom, linked with seasonal scarlet fever surges, marked increase in invasive infections, and exhibiting enhanced expression of the superantigen SpeA. The progenitor S. pyogenes 'M1global' and M1UK clones can be differentiated by 27 SNPs and 4 indels, yet the mechanism for speA upregulation is unknown. Here we investigate the previously unappreciated expansion of M1UK in Australia, now isolated from the majority of serious infections caused by serotype M1 S. pyogenes. M1UK sub-lineages circulating in Australia also contain a novel toxin repertoire associated with epidemic scarlet fever causing S. pyogenes in Asia. A single SNP in the 5' transcriptional leader sequence of the transfer-messenger RNA gene ssrA drives enhanced SpeA superantigen expression as a result of ssrA terminator read-through in the M1UK lineage. This represents a previously unappreciated mechanism of toxin expression and urges enhanced international surveillance.


Assuntos
Escarlatina , Infecções Estreptocócicas , Humanos , Streptococcus pyogenes/genética , Escarlatina/epidemiologia , Superantígenos , Proteínas de Bactérias/genética , Reino Unido , Exotoxinas/genética , Mutação , Austrália
13.
Lancet Reg Health West Pac ; 24: 100488, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35769175

RESUMO

Background: Typhoid fever is endemic in some Pacific Island Countries including Fiji and Samoa yet genomic surveillance is not routine in such settings. Previous studies suggested imports of the global H58 clade of Salmonella enterica var Typhi (Salmonella Typhi) contribute to disease in these countries which, given the MDR potential of H58, does not auger well for treatment. The objective of the study was to define the genomic epidemiology of Salmonella Typhi in Fiji. Methods: Genomic sequencing approaches were implemented to study the distribution of 255 Salmonella Typhi isolates from the Central Division of Fiji. We augmented epidemiological surveillance and Bayesian phylogenomic approaches with a multi-year typhoid case-control study to define geospatial patterns among typhoid cases. Findings: Genomic analyses showed Salmonella Typhi from Fiji resolved into 2 non-H58 genotypes with isolates from the two dominant ethnic groups, the Indigenous (iTaukei) and non-iTaukei genetically indistinguishable. Low rates of international importation of clones was observed and overall, there were very low levels an antibiotic resistance within the endemic Fijian typhoid genotypes. Genomic epidemiological investigations were able to identify previously unlinked case clusters. Bayesian phylodynamic analyses suggested that genomic variation within the larger endemic Salmonella Typhi genotype expanded at discreet times, then contracted. Interpretation: Cyclones and flooding drove 'waves' of typhoid outbreaks in Fiji which, through population aggregation, poor sanitation and water safety, and then mobility of the population, spread clones more widely. Minimal international importations of new typhoid clones suggest that targeted local intervention strategies may be useful in controlling endemic typhoid infection. These findings add to our understanding of typhoid transmission networks in an endemic island country with broad implications, particularly across Pacific Island Countries. Funding: This work was supported by the Coalition Against Typhoid through the Bill and Melinda Gates Foundation [grant number OPP1017518], the Victorian Government, the National Health and Medical Research Council Australia, the Australian Research Council, and the Fiji Ministry of Health and Medical Services.

14.
Nat Commun ; 13(1): 6557, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450721

RESUMO

Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.


Assuntos
Streptococcus pyogenes , Sulfametoxazol , Sulfametoxazol/farmacologia , Antibacterianos/farmacologia , Especificidade por Substrato , Ácido Fólico
15.
Lancet Reg Health West Pac ; 6: 100081, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34327410

RESUMO

BACKGROUND: Common infections of the skin such as impetigo and scabies represent a large burden of disease globally, being particularly prevalent in tropical and resource-limited settings. Efforts to address these infections through mass drug administrations have recently been shown as efficacious and safe. In Samoa, a Pacific Island nation, there is a marked lack of epidemiological data for these neglected tropical diseases, or appreciation of their drivers in this setting. METHODS: An observational, cross-sectional survey of children aged between 4 and 15 years attending primary schools in rural areas of Upolu Island, Samoa was carried out to assess the prevalence of impetigo and scabies in schoolchildren residing in rural Samoa, integrated with descriptive epidemiological and microbial genomic data. A phylogenetic assessment of local Staphylococcus aureus isolated from Samoan schoolchildren was performed to estimate putative community transmission. FINDINGS: In this survey, the prevalence of impetigo observed in Samoan schoolchildren was one of the highest described globally (57•1%, 95% CI [53•8-60•5%], 476/833). Associations between active impetigo and age and gender were noted, with younger children and males more commonly affected (aOR2•8 [1•8-4•7]and aOR1•8 [1•3-2•5], respectively). The prevalence of scabies was similar to that seen in other South Pacific island countries (14•4%, 95% CI [12•2-17•0%], 120/833). Transmission of S. aureus was predicted, primarily between those children attending the same school. Carriage of S. pyogenes was notably low, with pharyngeal carriage observed in less than 2% of schoolchildren, consistent with earlier studies from Samoa. INTERPRETATION: This study describes a considerable burden of disease attributed to impetigo and scabies in Samoa. These findings will be valuable in addressing the public health challenge posed by these conditions, providing baseline prevalence data and highlighting practical strategies to reduce transmission of relevant microbes and parasites in this setting. TALA TOMUA: O a'afiaga o le pa'u i fa'ama'i o le po'u (impetigo) ma le utu o le pa'u (scabies), ua tele naua le fanau ua maua ai i le pasefika, ma le lalolagi atoa. O fuafuaga vaai mamao ma polokalame e fofoina ai nei faafitauli, e aofia ai le inumaga o fualaau e tapeina ai nei fa'ama'i, ua aliali mai ai e mafai ona faatamaia nei fa'ama'i. E le o tele ni tusitusiga ma faamaumauga i totonu o Samoa, pe ta'atele nei fa'amai o le pa'u pe leai. Ona o le le faatauaina o nei fa'ama'i, e le o iloa fo'i ni mafuaga ma nisi tulaga e faateleina ai nei fa'ama'i o le pa'u i Samoa. FAATINOINA O LE SUESUEGA: O le suesuega faasaenisi i le fanau aoga i le va o le 4 ma le 15 tausaga o loo ao'oga i le tulaga lua i nisi o nu'u i tua i Upolu, na faatinoina ai suesuega lea, ia suesueina ai le aotelega ma fainumera o le fanau ua maua i fa'ama'I o le po'u (impetigo) ma le utu o le pa'u (scabies). O lenei foi suesuega, na fia iloa ai fo'i po'o a ituaiga siama eseese o loo maua i luga o pa'u ma tino o le fanau aoga, ina ia iloa ai foi auala ua pipisi ai nei siama mai le isi tamaitiiti i le isi, ona mafua ai lea o nei fa'ama'i o le pa'u. TANUUGA O LE SUESUEGA: Ua faailoa mai i le suesuega, le ta'atele o le fa'ama'i o le po'u (impetigo) ua maua ai le fanau aoga (57%), i aoga na faia ai le suesuega. O se fainumera ua maualuga tele i le lalolagi atoa. E toatele atu nisi o le fanau laiti (younger) ma tama (male) e maua i le po'u nai lo isi tamaiti. O le fainumera o le utu o le pa'u (scabies) (14·4%) e tai tutusa lava ma isi motu o le Pasefika. O le feaveaina o le siama faapitoa (staph aureus) ua tupu lea i le fanau ua ao'oga i le aoga e tasi. E le toatele foi nisi o le fanau (2%) na maua i le siama faapitoa o le fa'ai (strep pyogenes) e ona mafua ai le fiva rumatika. O lenei fainumera ua tai tutusa ma suesuega faasaenisi na fai muamua i Samoa. AOTELEGA: O le aotelega la o lenei suesuega faasaenisi, ua faailoaina mai ai le tele naua o le fa'ama'i o le pa'u, o po'u (impetigo) ma le utu o le pa'u (scabies) i Samoa nei. O nei foi suesuega o le a aoga tele ini polokalame ma ni fuafuaga mamao e fa'afoisia ai nei faafitauli i le soifua maloloina o le fanau i Samoa. O le a avea foi nei fainumera e faamaumauina mo le silafia e le atunuu ma le soifua maloloina, le ta'atele o nei fa'amai o le pa'u, mo le tapenaina o ni fofo talafeagai ise taimi o i luma, ina ia faaitiitina ai le pipisi o nei siami i fanau ao'oga i Samoa.

16.
Infect Genet Evol ; 86: 104609, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33147506

RESUMO

Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.


Assuntos
Genoma Bacteriano , Genômica , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/genética , Genômica/métodos , Saúde Global , Humanos , Epidemiologia Molecular , Vigilância da População , Streptococcus pyogenes/classificação
17.
Methods Mol Biol ; 2136: 81-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32430815

RESUMO

Whole-genome sequencing (WGS) is used to determine the genetic composition of an organism. This fast-moving field is continually evolving through technical advancements and the development of new bioinformatic tools for analyzing genomic data; however, the basic principles and processes for defining and processing high-quality genome sequence information remain unchanged. Here, we introduce some considerations and describe some commonly used bioinformatic steps for processing raw genome sequence data to generate genome assemblies through to understanding basic population genomics.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Streptococcus pyogenes/genética , Composição de Bases/genética , Biologia Computacional/métodos , Genoma/genética , Genômica/métodos , Metagenômica/métodos , Sequenciamento Completo do Genoma/métodos
18.
mBio ; 11(2)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32291303

RESUMO

In Gram-negative bacteria, the permeability of the outer membrane governs rates of antibiotic uptake and thus the efficacy of antimicrobial treatment. Hydrophilic drugs like ß-lactam antibiotics depend on diffusion through pore-forming outer membrane proteins to reach their intracellular targets. In this study, we investigated the distribution of porin genes in more than 2,700 Klebsiella isolates and found a widespread loss of OmpK35 functionality, particularly in those strains isolated from clinical environments. Using a defined set of outer-membrane-remodeled mutants, the major porin OmpK35 was shown to be largely responsible for ß-lactam permeation. Sequence similarity network analysis characterized the porin protein subfamilies and led to discovery of a new porin family member, OmpK38. Structure-based comparisons of OmpK35, OmpK36, OmpK37, OmpK38, and PhoE showed near-identical pore frameworks but defining differences in the sequence characteristics of the extracellular loops. Antibiotic sensitivity profiles of isogenic Klebsiella pneumoniae strains, each expressing a different porin as its dominant pore, revealed striking differences in the antibiotic permeability characteristics of each channel in a physiological context. Since K. pneumoniae is a nosocomial pathogen with high rates of antimicrobial resistance and concurrent mortality, these experiments elucidate the role of porins in conferring specific drug-resistant phenotypes in a global context, informing future research to combat antimicrobial resistance in K. pneumoniaeIMPORTANCEKlebsiella pneumoniae is a pathogen of humans with high rates of mortality and a recognized global rise in incidence of carbapenem-resistant K. pneumoniae (CRKP). The outer membrane of K. pneumoniae forms a permeability barrier that modulates the ability of antibiotics to reach their intracellular target. OmpK35, OmpK36, OmpK37, OmpK38, PhoE, and OmpK26 are porins in the outer membrane of K. pneumoniae, demonstrated here to have a causative relationship to drug resistance phenotypes in a physiological context. The data highlight that currently trialed combination treatments with a carbapenem and ß-lactamase inhibitors could be effective on porin-deficient K. pneumoniae Together with structural data, the results reveal the role of outer membrane proteome remodeling in antimicrobial resistance of K. pneumoniae and point to the role of extracellular loops, not channel parameters, in drug permeation. This significant finding warrants care in the development of phage therapies for K. pneumoniae infections, given the way porin expression will be modulated to confer phage-resistant-and collateral drug-resistant-phenotypes in K. pneumoniae.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Porinas/genética , Proteoma , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Permeabilidade da Membrana Celular , Farmacorresistência Bacteriana Múltipla , Genômica , Saúde Global , Humanos , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/metabolismo , Testes de Sensibilidade Microbiana , Porinas/metabolismo
19.
mSphere ; 5(2)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350098

RESUMO

A recent clinical report has linked Streptococcus pyogenes ß-lactam antibiotic resistance to mutation in the penicillin binding protein (PBP) PBP2x. To determine whether this is an isolated case or reflects a broader prevalence of mutations that might confer reduced ß-lactam susceptibility, we investigated the relative frequency of PBP sequence variation within a global database of 9,667 S. pyogenes isolates. We found that mutations in S. pyogenes PBPs (PBP2x, PBP1a, PBP1b, and PBP2a) occur infrequently across this global database, with fewer than 3 amino acid changes differing between >99% of the global population. Only 4 of the 9,667 strains contained mutations near transpeptidase active sites of PBP2x or PBP1a. The reported PBP2x T553K substitution was not identified. These findings are in contrast to those of 2,520 S. pneumococcus sequences where PBP mutations are relatively frequent and are often located in key ß-lactam binding pockets. These data, combined with the general lack of penicillin resistance reported in S. pyogenes worldwide, suggests that extensive, unknown constraints restrict S. pyogenes PBP sequence plasticity. Our findings imply that while heavy antibiotic pressure may select for mutations in the PBPs, there is currently no evidence of such mutations becoming fixed in the S. pyogenes population or that mutations are being sequentially acquired in the PBPs.IMPORTANCE ß-Lactam antibiotics are the first-line therapeutic option for Streptococcus pyogenes infections. Despite the global high prevalence of S. pyogenes infections and widespread use of ß-lactams worldwide, reports of resistance to ß-lactam antibiotics, such as penicillin, have been incredibly rare. Recently, ß-lactam resistance, as defined by clinical breakpoints, was detected in two clinical S. pyogenes isolates with accompanying mutations in the active site of the penicillin binding protein PBP2x, raising concerns that ß-lactam resistance will become more widespread. We screened a global database of S. pyogenes genome sequences to investigate the frequency of PBP mutations, identifying that PBP mutations are uncommon relative to those of Streptococcus pneumoniae These findings support clinical observations that ß-lactam resistance is rare in S. pyogenes and suggest that there are considerable constraints on S. pyogenes PBP sequence variation.


Assuntos
Proteínas de Bactérias/genética , Variação Genética , Mutação , Proteínas de Ligação às Penicilinas/genética , Streptococcus pyogenes/genética , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Streptococcus pyogenes/efeitos dos fármacos
20.
J Vet Diagn Invest ; 32(2): 268-276, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31983302

RESUMO

Focal duodenal necrosis (FDN) is an intestinal disease of egg-layer chickens characterized by multifocal necrosis of the duodenal loop and proximal jejunum. Affected flocks usually have decreased egg weights and drops in egg production. Previous studies have associated this condition with Clostridium perfringens infection. We tried to reproduce FDN by experimental infection of egg-laying chickens using different netB-positive and netB-negative C. perfringens strains, and duodenal homogenate obtained from FDN lesions. Chickens challenged with C. perfringens and/or duodenal homogenate developed duodenitis after challenge. Gross lesions included mucosal erosions, hyperemia, mucosal hemorrhages, and watery intestinal content. Microscopic lesions included mild enterocyte degeneration and necrosis, and mild-to-moderate hemorrhage and lymphoplasmacytic and heterophilic infiltration of the lamina propria. Two netB-positive C. perfringens strains closely related to necrotic enteritis pathogenic strains, by genomic composition, were re-isolated from lesions. Necrosis of intestinal crypts was observed in chickens challenged with duodenal homogenate with or without C. perfringens coinfection. Characteristic microscopic FDN lesions with significant necrosis and loss of villus enterocytes were not reproduced.


Assuntos
Galinhas , Infecções por Clostridium/veterinária , Clostridium perfringens/fisiologia , Enterite/veterinária , Doenças das Aves Domésticas/patologia , Gastropatias/veterinária , Animais , Infecções por Clostridium/microbiologia , Infecções por Clostridium/patologia , Duodeno/microbiologia , Duodeno/patologia , Enterite/microbiologia , Enterite/patologia , Doenças das Aves Domésticas/microbiologia , Gastropatias/microbiologia , Gastropatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA