Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(3): 758-769.e9, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30033370

RESUMO

While mutations affecting protein-coding regions have been examined across many cancers, structural variants at the genome-wide level are still poorly defined. Through integrative deep whole-genome and -transcriptome analysis of 101 castration-resistant prostate cancer metastases (109X tumor/38X normal coverage), we identified structural variants altering critical regulators of tumorigenesis and progression not detectable by exome approaches. Notably, we observed amplification of an intergenic enhancer region 624 kb upstream of the androgen receptor (AR) in 81% of patients, correlating with increased AR expression. Tandem duplication hotspots also occur near MYC, in lncRNAs associated with post-translational MYC regulation. Classes of structural variations were linked to distinct DNA repair deficiencies, suggesting their etiology, including associations of CDK12 mutation with tandem duplications, TP53 inactivation with inverted rearrangements and chromothripsis, and BRCA2 inactivation with deletions. Together, these observations provide a comprehensive view of how structural variations affect critical regulators in metastatic prostate cancer.


Assuntos
Variação Estrutural do Genoma/genética , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA2/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Variações do Número de Cópias de DNA , Exoma , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Sequências de Repetição em Tandem/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento Completo do Genoma/métodos
3.
Nature ; 608(7921): 199-208, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859180

RESUMO

Circulating tumour DNA (ctDNA) in blood plasma is an emerging tool for clinical cancer genotyping and longitudinal disease monitoring1. However, owing to past emphasis on targeted and low-resolution profiling approaches, our understanding of the distinct populations that comprise bulk ctDNA is incomplete2-12. Here we perform deep whole-genome sequencing of serial plasma and synchronous metastases in patients with aggressive prostate cancer. We comprehensively assess all classes of genomic alterations and show that ctDNA contains multiple dominant populations, the evolutionary histories of which frequently indicate whole-genome doubling and shifts in mutational processes. Although tissue and ctDNA showed concordant clonally expanded cancer driver alterations, most individual metastases contributed only a minor share of total ctDNA. By comparing serial ctDNA before and after clinical progression on potent inhibitors of the androgen receptor (AR) pathway, we reveal population restructuring converging solely on AR augmentation as the dominant genomic driver of acquired treatment resistance. Finally, we leverage nucleosome footprints in ctDNA to infer mRNA expression in synchronously biopsied metastases, including treatment-induced changes in AR transcription factor signalling activity. Our results provide insights into cancer biology and show that liquid biopsy can be used as a tool for comprehensive multi-omic discovery.


Assuntos
DNA Tumoral Circulante , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos/farmacologia , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Células Clonais/metabolismo , Células Clonais/patologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Marcadores Genéticos/genética , Genoma Humano/genética , Genômica/métodos , Humanos , Biópsia Líquida/métodos , Masculino , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Nucleossomos/genética , Nucleossomos/metabolismo , Neoplasias da Próstata/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Neoplásico/análise , RNA Neoplásico/genética , Receptores Androgênicos/metabolismo
4.
Genome Res ; 34(4): 539-555, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38719469

RESUMO

Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note, commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chromatin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.


Assuntos
Neoplasias da Mama , Cromatina , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Polimorfismo de Nucleotídeo Único
5.
Nucleic Acids Res ; 51(3): e18, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546757

RESUMO

The vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.


Assuntos
Estudo de Associação Genômica Ampla , Sequências Reguladoras de Ácido Nucleico , Humanos , Masculino , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética
6.
Nucleic Acids Res ; 51(1): 99-116, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36535377

RESUMO

Numerous cancers, including prostate cancer (PCa), are addicted to transcription programs driven by specific genomic regions known as super-enhancers (SEs). The robust transcription of genes at such SEs is enabled by the formation of phase-separated condensates by transcription factors and coactivators with intrinsically disordered regions. The androgen receptor (AR), the main oncogenic driver in PCa, contains large disordered regions and is co-recruited with the transcriptional coactivator mediator complex subunit 1 (MED1) to SEs in androgen-dependent PCa cells, thereby promoting oncogenic transcriptional programs. In this work, we reveal that full-length AR forms foci with liquid-like properties in different PCa models. We demonstrate that foci formation correlates with AR transcriptional activity, as this activity can be modulated by changing cellular foci content chemically or by silencing MED1. AR ability to phase separate was also validated in vitro by using recombinant full-length AR protein. We also demonstrate that AR antagonists, which suppress transcriptional activity by targeting key regions for homotypic or heterotypic interactions of this receptor, hinder foci formation in PCa cells and phase separation in vitro. Our results suggest that enhanced compartmentalization of AR and coactivators may play an important role in the activation of oncogenic transcription programs in androgen-dependent PCa.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Androgênios , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Expressão Gênica , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
7.
Nat Immunol ; 13(3): 237-45, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306692

RESUMO

Immune responses are initiated and primed by dendritic cells (DCs) that cross-present exogenous antigen. The chaperone CD74 (invariant chain) is thought to promote DC priming exclusively in the context of major histocompatibility complex (MHC) class II. However, we demonstrate here a CD74-dependent MHC class I cross-presentation pathway in DCs that had a major role in the generation of MHC class I-restricted, cytolytic T lymphocyte (CTL) responses to viral protein- and cell-associated antigens. CD74 associated with MHC class I in the endoplasmic reticulum of DCs and mediated the trafficking of MHC class I to endolysosomal compartments for loading with exogenous peptides. We conclude that CD74 has a previously undiscovered physiological function in endolysosomal DC cross-presentation for priming MHC class I-mediated CTL responses.


Assuntos
Antígenos de Diferenciação de Linfócitos B/imunologia , Apresentação Cruzada , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Lisossomos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Células Dendríticas/imunologia , Camundongos , Vesiculovirus/imunologia
8.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34318896

RESUMO

Androgen receptor (AR) splice variants are proposed to be a potential driver of lethal castration-resistant prostate cancer. AR splice variant 7 (ARv7) is the most commonly observed isoform and strongly correlates with resistance to second-generation anti-androgens. Despite this clinical evidence, the interplay between ARv7 and the highly expressed full-length AR (ARfl) remains unclear. In this work, we show that ARfl/ARv7 heterodimers readily form in the nucleus via an intermolecular N/C interaction that brings the four termini of the proteins in close proximity. Combining fluorescence resonance energy transfer and fluorescence recovery after photobleaching, we demonstrate that these heterodimers undergo conformational changes following DNA binding, indicating dynamic nuclear receptor interaction. Although transcriptionally active, ARv7 can only form short-term interactions with DNA at highly accessible high-occupancy ARfl binding sites. Dimerization with ARfl does not affect ARv7 binding dynamics, suggesting that DNA binding occupancy is determined by the individual protein monomers and not the homodimer or heterodimer complex. Overall, these biophysical studies reveal detailed properties of ARv7 dynamics as both a homodimer or heterodimer with ARfl.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Humanos , Masculino , Isoformas de Proteínas , Receptores Androgênicos/genética
9.
Cell Commun Signal ; 21(1): 328, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974198

RESUMO

BACKGROUND: Glioblastoma is the most common and aggressive primary brain tumor with extremely poor prognosis, highlighting an urgent need for developing novel treatment options. Identifying epigenetic vulnerabilities of cancer cells can provide excellent therapeutic intervention points for various types of cancers. METHOD: In this study, we investigated epigenetic regulators of glioblastoma cell survival through CRISPR/Cas9 based genetic ablation screens using a customized sgRNA library EpiDoKOL, which targets critical functional domains of chromatin modifiers. RESULTS: Screens conducted in multiple cell lines revealed ASH2L, a histone lysine methyltransferase complex subunit, as a major regulator of glioblastoma cell viability. ASH2L depletion led to cell cycle arrest and apoptosis. RNA sequencing and greenCUT&RUN together identified a set of cell cycle regulatory genes, such as TRA2B, BARD1, KIF20B, ARID4A and SMARCC1 that were downregulated upon ASH2L depletion. Mass spectrometry analysis revealed the interaction partners of ASH2L in glioblastoma cell lines as SET1/MLL family members including SETD1A, SETD1B, MLL1 and MLL2. We further showed that glioblastoma cells had a differential dependency on expression of SET1/MLL family members for survival. The growth of ASH2L-depleted glioblastoma cells was markedly slower than controls in orthotopic in vivo models. TCGA analysis showed high ASH2L expression in glioblastoma compared to low grade gliomas and immunohistochemical analysis revealed significant ASH2L expression in glioblastoma tissues, attesting to its clinical relevance. Therefore, high throughput, robust and affordable screens with focused libraries, such as EpiDoKOL, holds great promise to enable rapid discovery of novel epigenetic regulators of cancer cell survival, such as ASH2L. CONCLUSION: Together, we suggest that targeting ASH2L could serve as a new therapeutic opportunity for glioblastoma. Video Abstract.


Assuntos
Glioblastoma , Proteínas Nucleares , Humanos , Sobrevivência Celular , Proteínas Nucleares/metabolismo , Glioblastoma/genética , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cinesinas/genética , Cinesinas/metabolismo
10.
Adv Exp Med Biol ; 1408: 291-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37093434

RESUMO

Prostate-specific membrane antigen (PSMA) is expressed in epithelial cells of the prostate gland and is strongly upregulated in prostatic adenocarcinoma, with elevated expression correlating with metastasis, progression, and androgen independence. Because of its specificity, PSMA is a major target of prostate cancer therapy; however, detectable levels of PSMA are also found in other tissues, especially in salivary glands and kidney, generating bystander damage of these tissues. Antibody target therapy has been used with relative success in reducing tumor growth and prostate specific antigen (PSA) levels. However, since antibodies are highly stable in plasma, they have prolonged time in circulation and accumulate in organs with an affinity for antibodies such as bone marrow. For that reason, a second generation of PSMA targeted therapeutic agents has been developed. Small molecules and minibodies have had promising clinical trial results, but concerns about their specificity had arisen with side effects due to accumulation in salivary glands and kidneys. Herein we study the specificity of small molecules and minibodies that are currently being clinically tested. We observed a high affinity of these molecules for PSMA in prostate, kidney and salivary gland, suggesting that their effect is not prostate specific. The search for specific prostate target agents must continue so as to optimally treat patients with prostate cancer, while minimizing deleterious effects in other PSMA expressing tissues.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/patologia , Antígenos de Superfície/metabolismo , Antígeno Prostático Específico
11.
Arch Pharm (Weinheim) ; 356(12): e2300217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37816092

RESUMO

The pro-inflammatory cytokine interleukin-1 (IL-1) drives the pathogenesis of several inflammatory diseases. Recent studies have revealed that 2-indolinones can modulate cytokine responses. Therefore, we screened several 2-indolinone derivatives in preliminary studies to develop agents with anti-IL-1 activity. First, the putative efficacies and binding interactions of 2-indolinones were evaluated by docking studies. Second, previously synthesized 5-fluoro/(trifluoromethoxy)-1H-indole-2,3-dione 3-(4-phenylthiosemicarbazones) (compounds 47-69) which had the highest inhibitory effect in the screening were evaluated for inhibitory effects on the IL-1 receptor (IL-1R). Compounds 52 (IC50 = 0.09 µM) and 65 (IC50 = 0.07 µM) were selected as lead compounds for the subsequent synthesis of new derivatives. The novel 5-fluoro/(trifluoromethoxy)-1H-indole-2,3-dione 3-(4-phenylthiosemicarbazones) (compounds 70-116) were designed, synthesized, and in vitro studies were completed. The compounds 76, 78, 81, 91, 100, 105, and 107 tested showed nontoxic inhibitory effects on IL-1R-dependent responses in the range of 0.01-0.06 µM and stronger than the lead compounds 52 and 65. In vitro and in silico findings showed that compounds 78 (IC50 = 0.01 µM) and 81 (IC50 = 0.02 µM) had the strongest IL-1R inhibitory effects and the most favorable drug-like properties. Molecular modeling studies of the compounds 78 and 81 were carried out to determine the possible binding interactions at the active site of the IL-1R.


Assuntos
Antineoplásicos , Interleucina-1 , Relação Estrutura-Atividade , Oxindóis , Modelos Moleculares , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais
12.
Prostate ; 82(1): 145-153, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672371

RESUMO

BACKGROUND: The detection rate of clinically significant prostate cancer has improved with the use of multiparametric magnetic resonance imaging (mpMRI). Yet, even with MRI-guided biopsy 15%-35% of high-risk lesions (Prostate Imaging-Reporting and Data System [PI-RADS] 4 and 5) are histologically benign. It is unclear if these false positives are due to diagnostic/sampling errors or pathophysiological alterations. To better understand this, we tested histologically benign PI-RAD 4 and 5 lesions for common malignant epigenetic alterations. MATERIALS AND METHODS: MRI-guided in-bore biopsy samples were collected from 45 patients with PI-RADS 4 (n = 31) or 5 (n = 14) lesions. Patients had a median clinical follow-up of 3.8 years. High-risk mpMRI patients were grouped based on their histology into biopsy positive for tumor (BPT; n = 28) or biopsy negative for tumor (BNT; n = 17). From these biopsy samples, DNA methylation of well-known tumor suppressor genes (APC, GSTP1, and RARß2) was quantified. RESULTS: Similar to previous work we observed high rates of promoter methylation at GSTP1 (92.7%), RARß2 (57.3%), and APC (37.8%) in malignant BPT samples but no methylation in benign TURP chips. Interestingly, similar to the malignant samples the BNT biopsies also had increased methylation at the promoter of GSTP1 (78.8%) and RARß2 (34.6%). However, despite these epigenetic alterations none of these BNT patients developed prostate cancer, and those who underwent repeat mpMRI (n = 8) demonstrated either radiological regression or stability. CONCLUSIONS: Histologically benign PI-RADS 4 and 5 lesions harbor prostate cancer-associated epigenetic alterations.


Assuntos
Metilação de DNA , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Próstata , Neoplasias da Próstata , Ultrassonografia de Intervenção/métodos , Biomarcadores/análise , Erros de Diagnóstico/prevenção & controle , Epigênese Genética , Reações Falso-Positivas , Genes Supressores de Tumor/fisiologia , Humanos , Biópsia Guiada por Imagem/métodos , Biópsia Guiada por Imagem/normas , Biópsia Guiada por Imagem/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia
13.
Cancer ; 128(12): 2269-2280, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35333400

RESUMO

BACKGROUND: B7 homolog 3 (B7-H3) is an immunomodulatory molecule that is highly expressed in prostate cancer (PCa) and belongs to the B7 superfamily, which includes PD-L1. Immunotherapies (antibodies, antibody-drug conjugates, and chimeric antigen receptor T cells) targeting B7-H3 are currently in clinical trials; therefore, elucidating the molecular and immune microenvironment correlates of B7-H3 expression may help to guide trial design and interpretation. The authors tested the interconnected hypotheses that B7-H3 expression is associated with genetic racial ancestry, immune cell composition, and androgen receptor signaling in PCa. METHODS: An automated, clinical-grade immunohistochemistry assay was developed by to digitally quantify B7-H3 protein expression across 2 racially diverse cohorts of primary PCa (1 with previously reported transcriptomic data) and pretreatment and posttreatment PCa tissues from a trial of intensive neoadjuvant hormonal therapy. RESULTS: B7-H3 protein expression was significantly lower in self-identified Black patients and was inversely correlated with the percentage African ancestry. This association with race was independent of the significant association of B7-H3 protein expression with ERG/ETS and PTEN status. B7-H3 messenger RNA expression, but not B7-H3 protein expression, was significantly correlated with regulatory (FOXP3-positive) T-cell density. Finally, androgen receptor activity scores were significantly correlated with B7-H3 messenger RNA expression, and neoadjuvant intensive hormonal therapy was associated with a significant decrease in B7-H3 protein expression. CONCLUSIONS: The current data underscore the importance of studying racially and molecularly diverse PCa cohorts in the immunotherapy era. This study is among the first to use genetic ancestry markers to add to the emerging evidence that PCa in men of African ancestry may have a distinct biology associated with B7-H3 expression. LAY SUMMARY: B7-H3 is an immunomodulatory molecule that is highly expressed in prostate cancer and is under investigation in clinical trials. The authors determined that B7-H3 protein expression is inversely correlated with an individual's proportion of African ancestry. The results demonstrate that B7-H3 messenger RNA expression is correlated with the density of tumor T-regulatory cells. Finally, in the first paired analysis of B7-H3 protein expression before and after neoadjuvant intensive hormone therapy, the authors determined that hormone therapy is associated with a decrease in B7-H3 protein levels, suggesting that androgen signaling may positively regulate B7-H3 expression. These results may help to guide the design of future clinical trials and to develop biomarkers of response in such trials.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Androgênios , Antígenos B7/genética , Antígenos B7/metabolismo , Antígeno B7-H1/genética , Contagem de Células , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , RNA Mensageiro , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Microambiente Tumoral
14.
Bioinformatics ; 36(3): 813-818, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504186

RESUMO

MOTIVATION: Recent advances in the areas of bioinformatics and chemogenomics are poised to accelerate the discovery of small molecule regulators of cell development. Combining large genomics and molecular data sources with powerful deep learning techniques has the potential to revolutionize predictive biology. In this study, we present Deep gene COmpound Profiler (DeepCOP), a deep learning based model that can predict gene regulating effects of low-molecular weight compounds. This model can be used for direct identification of a drug candidate causing a desired gene expression response, without utilizing any information on its interactions with protein target(s). RESULTS: In this study, we successfully combined molecular fingerprint descriptors and gene descriptors (derived from gene ontology terms) to train deep neural networks that predict differential gene regulation endpoints collected in LINCS database. We achieved 10-fold cross-validation RAUC scores of and above 0.80, as well as enrichment factors of >5. We validated our models using an external RNA-Seq dataset generated in-house that described the effect of three potent antiandrogens (with different modes of action) on gene expression in LNCaP prostate cancer cell line. The results of this pilot study demonstrate that deep learning models can effectively synergize molecular and genomic descriptors and can be used to screen for novel drug candidates with the desired effect on gene expression. We anticipate that such models can find a broad use in developing novel cancer therapeutics and can facilitate precision oncology efforts. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Neoplasias , Ontologia Genética , Humanos , Masculino , Projetos Piloto , Medicina de Precisão
15.
J Antimicrob Chemother ; 73(5): 1235-1241, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29415120

RESUMO

Objectives: We describe the molecular characteristics of colistin resistance and its impact on patient mortality. Methods: A prospective cohort study was performed in seven different Turkish hospitals. The genotype of each isolate was determined by MLST and repetitive extragenic palindromic PCR (rep-PCR). Alterations in mgrB were detected by sequencing. Upregulation of pmrCAB, phoQ and pmrK was quantified by RT-PCR. mcr-1 and the genes encoding OXA-48, NDM-1 and KPC were amplified by PCR. Results: A total of 115 patients diagnosed with colistin-resistant K. pneumoniae (ColR-Kp) infection were included. Patients were predominantly males (55%) with a median age of 63 (IQR 46-74) and the 30 day mortality rate was 61%. ST101 was the most common ST and accounted for 68 (59%) of the ColR-Kp. The 30 day mortality rate in patients with these isolates was 72%. In ST101, 94% (64/68) of the isolates had an altered mgrB gene, whereas the alteration occurred in 40% (19/47) of non-ST101 isolates. The OXA-48 and NDM-1 carbapenemases were found in 93 (81%) and 22 (19%) of the total 115 isolates, respectively. In multivariate analysis for the prediction of 30 day mortality, ST101 (OR 3.4, CI 1.46-8.15, P = 0.005) and ICU stay (OR 7.4, CI 2.23-29.61, P = 0.002) were found to be significantly associated covariates. Conclusions: Besides ICU stay, ST101 was found to be a significant independent predictor of patient mortality among those infected with ColR-Kp. A significant association was detected between ST101 and OXA-48. ST101 may become a global threat in the dissemination of colistin resistance and the increased morbidity and mortality of K. pneumoniae infection.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Genótipo , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Klebsiella pneumoniae/classificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Hospitais , Humanos , Lactente , Recém-Nascido , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Estudos Prospectivos , Análise de Sequência de DNA , Análise de Sobrevida , Turquia/epidemiologia , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 111(4): 1473-8, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474773

RESUMO

Mitochondrial biogenesis is regulated by signaling pathways sensitive to extracellular conditions and to the internal environment of the cell. Therefore, treatments for disease caused by mutation of mtDNA may emerge from studies of how signal transduction pathways command mitochondrial function. We have examined the role of phosphatases under the control of the conserved α4/Tap42 protein in cells lacking a mitochondrial genome. We found that deletion of protein phosphatase 2A (PP2A) or of protein phosphatase 6 (PP6) protects cells from the reduced proliferation, mitochondrial protein import defects, lower mitochondrial electrochemical potential, and nuclear transcriptional response associated with mtDNA damage. Moreover, PP2A or PP6 deletion allows viability of a sensitized yeast strain after mtDNA loss. Interestingly, the Saccharomyces cerevisiae ortholog of the mammalian AMP-activated protein kinase was required for the full benefits of PP6 deletion and also for proliferation of otherwise wild-type cells lacking mtDNA. Our work highlights the important role that nutrient-responsive signaling pathways can play in determining the response to mitochondrial dysfunction.


Assuntos
Dano ao DNA , DNA Mitocondrial/genética , Fosfoproteínas Fosfatases/metabolismo , Saccharomyces cerevisiae/genética , Deleção de Sequência , Citometria de Fluxo , Mutação , Fosfoproteínas Fosfatases/genética , Transcriptoma
17.
BMC Cancer ; 15: 871, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26553077

RESUMO

BACKGROUND: Synchronous multifocal tumours are commonly observed in urothelial carcinomas of the bladder. The origin of these physically independent tumours has been proposed to occur by either intraluminal migration (clonal) or spontaneous transformation of multiple cells by carcinogens (field effect). It is unclear which model is correct, with several studies supporting both hypotheses. A potential cause of this uncertainty may be the small number of genetic mutations previously used to quantify the relationship between these tumours. METHODS: To better understand the genetic lineage of these tumours we conducted exome sequencing of synchronous multifocal pTa urothelial bladder cancers at a high depth, using multiple samples from three patients. RESULTS: Phylogenetic analysis of high confidence single nucleotide variants (SNV) demonstrated that the sequenced multifocal bladder cancers arose from a clonal origin in all three patients (bootstrap value 100 %). Interestingly, in two patients the most common type of tumour-associated SNVs were cytosine mutations of TpC* dinucleotides (Fisher's exact test p < 10(-41)), likely caused by APOBEC-mediated deamination. Incorporating these results into our clonal model, we found that TpC* type mutations occurred 2-5× more often among SNVs on the ancestral branches than in the more recent private branches (p < 10(-4)) suggesting that TpC* mutations largely occurred early in the development of the tumour. CONCLUSIONS: These results demonstrate that synchronous multifocal bladder cancers frequently arise from a clonal origin. Our data also suggests that APOBEC-mediated mutations occur early in the development of the tumour and may be a driver of tumourigenesis in non-muscle invasive urothelial bladder cancer.


Assuntos
Citidina Desaminase/genética , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Primárias Múltiplas/genética , Neoplasias da Bexiga Urinária/genética , Desaminase APOBEC-1 , Idoso , Linhagem da Célula/genética , Exoma/genética , Genética Populacional , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias Primárias Múltiplas/patologia , Filogenia , Polimorfismo de Nucleotídeo Único , Neoplasias da Bexiga Urinária/patologia
18.
Res Sq ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352568

RESUMO

Androgen receptor (AR)-mediated transcription plays a critical role in normal prostate development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigated the AR-driven epigenetic and chromosomal chromatin looping changes. We collected a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we found that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we showed that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then proposed and experimentally validated an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide new insight into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.

19.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38260576

RESUMO

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples. Notably, although ARv7 expression in VCaP cells increased rapidly in response to ENZ, there was a long lag before it gained chromatin binding and transcriptional activity. This lag was associated with an increase in chromatin accessibility, with the AR and nuclear factor I (NFI) motifs being most enriched at these more accessible sites. Moreover, the transcriptional effects of combined NFIB and NFIX knockdown versus ARv7 knockdown were highly correlated. These findings indicate that ARv7 can drive the AR program, but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.

20.
J Clin Invest ; 134(19)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39352383

RESUMO

BACKGROUNDAndrogen receptor signaling inhibitors (ARSIs) have improved outcomes for patients with metastatic castration-resistant prostate cancer (mCRPC), but their clinical benefit is limited by treatment resistance.METHODSTo investigate the mechanisms of ARSI resistance, we analyzed the whole-genome (n = 45) and transcriptome (n = 31) sequencing data generated from paired metastatic biopsies obtained before initiation of first-line ARSI therapy for mCRPC and after radiographic disease progression. We investigated the effects of genetic and pharmacologic modulation of SSTR1 in 22Rv1 cells, a representative mCRPC cell line.RESULTSWe confirmed the predominant role of tumor genetic alterations converging on augmenting androgen receptor (AR) signaling and the increased transcriptional heterogeneity and lineage plasticity during the emergence of ARSI resistance. We further identified amplifications involving a putative enhancer downstream of the AR and transcriptional downregulation of SSTR1, encoding somatostatin receptor 1, in ARSI-resistant tumors. We found that patients with SSTR1-low mCRPC tumors derived less benefit from subsequent ARSI therapy in a retrospective cohort. We showed that SSTR1 was antiproliferative in 22Rv1 cells and that the FDA-approved drug pasireotide suppressed 22Rv1 cell proliferation.CONCLUSIONOur findings expand the knowledge of ARSI resistance and point out actionable next steps, exemplified by potentially targeting SSTR1, to improve patient outcomes.FUNDINGNational Cancer Institute (NCI), NIH; Prostate Cancer Foundation; Conquer Cancer, American Society of Clinical Oncology Foundation; UCSF Benioff Initiative for Prostate Cancer Research; Netherlands Cancer Institute.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Receptores Androgênicos , Transdução de Sinais , Transcriptoma , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Transdução de Sinais/efeitos dos fármacos , Metástase Neoplásica , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/farmacologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA