Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nano Lett ; 24(8): 2637-2642, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38345784

RESUMO

Surface plasmon polaritons (SPPs) can confine and guide light in nanometer volumes and are ideal tools for achieving electric field enhancement and the construction of nanophotonic circuitry. The realization of the highest field strengths and fastest switching requires confinement also in the temporal domain. Here, we demonstrate a tapered plasmonic waveguide with an optimized grating structure that supports few-cycle surface plasmon polaritons with >70 THz bandwidth while achieving >50% light-field-to-plasmon coupling efficiency. This enables us to observe the─to our knowledge─shortest reported SPP wavepackets. Using time-resolved photoelectron microscopy with suboptical-wavelength spatial and sub-10 fs temporal resolution, we provide full spatiotemporal imaging of co- and counter-propagating few-cycle SPP wavepackets along tapered plasmonic waveguides. By comparing their propagation, we track the evolution of the laser-plasmon phase, which can be controlled via the coupling conditions.

2.
Phys Chem Chem Phys ; 25(27): 17869-17876, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37381794

RESUMO

Diamondoid molecules and their derivatives have attracted attention as fascinating building blocks for advanced functional materials. Depending on the balance between hydrogen bonds and London dispersion interactions, they can self-organize in different cluster structures with functional groups tailored for various applications. Here, we present a new approach to supramolecular aggregation where self-assembly of diamondoid acids and alcohols in the ultracold environment of superfluid helium nanodroplets (HNDs) was analyzed by a combination of time-of-flight mass spectrometry and computational tools. Experimentally observed magic numbers of the assembled cluster sizes were successfully identified and computed cluster structures gave valuable insights into a different conglomeration mode when compared to previously explored less-polar diamondoid derivatives. We have confirmed that functional groups acting as good hydrogen bond donors completely take over the self-organization process, resulting in fascinating pair-wise or cyclic supramolecular assemblies. Particularly noteworthy is that mono- and bis-substituted diamondoid derivatives of both series engage in completely different modes of action, which is reflected in differing non-covalent cluster geometries. Additionally, formed cyclic clusters with a polar cavity in the center and a non-polar diamondoid outer layer can be of high interest in porous material design and provide insights into the structural requirements needed to produce bulk materials with desired properties.

3.
Phys Chem Chem Phys ; 25(17): 11951-11958, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36942672

RESUMO

Diamondoid ethers were introduced into superfluid helium nanodroplets and the resulting clusters were analyzed by time-of-flight mass spectrometry. Clusters of higher abundances (magic number clusters) were identified and the corresponding potential cluster geometries were obtained from GFN2-xTB and DFT computations. We found that the studied diamondoid ethers readily self-assemble in helium nanodroplets and that London dispersion attraction between hydrocarbon subunits acts as a driving force for cluster formation. On the other hand, hydrogen bonding between ether oxygens and trace water molecules fosters the eventual breakdown of the initial supramolecular aggregate.

4.
Phys Rev Lett ; 129(7): 073201, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36018694

RESUMO

Strong-field ionization of nanoscale clusters provides excellent opportunities to study the complex correlated electronic and nuclear dynamics of near-solid density plasmas. Yet, monitoring ultrafast, nanoscopic dynamics in real-time is challenging, which often complicates a direct comparison between theory and experiment. Here, near-infrared laser-induced plasma dynamics in ∼600 nm diameter helium droplets are studied by femtosecond time-resolved x-ray coherent diffractive imaging. An anisotropic, ∼20 nm wide surface region, defined as the range where the density lies between 10% and 90% of the core value, is established within ∼100 fs, in qualitative agreement with theoretical predictions. At longer timescales, however, the width of this region remains largely constant while the radius of the dense plasma core shrinks at average rates of ≈71 nm/ps along and ≈33 nm/ps perpendicular to the laser polarization. These dynamics are not captured by previous plasma expansion models. The observations are phenomenologically described within a numerical simulation; details of the underlying physics, however, remain to be explored.

5.
Phys Chem Chem Phys ; 23(38): 21833-21839, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34554159

RESUMO

Diamantane clusters formed inside superfluid helium nanodroplets were analyzed by time-of-flight mass spectrometry. Distinct cluster sizes were identified as "magic numbers" and the corresponding feasible structures for clusters consisting of up to 19 diamantane molecules were derived from meta-dynamics simulations and subsequent DFT computations. The obtained interaction energies were attributed to London dispersion attraction. Our findings demonstrate that diamantane units readily form assemblies even at low pressures and near-zero Kelvin temperatures, confirming the importance of the intermolecular dispersion effect for condensation of matter.

6.
Phys Chem Chem Phys ; 21(37): 21104-21108, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31528952

RESUMO

Vanadium oxide clusters with a mean diameter below 10 nm are investigated by high resolution Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and UV-vis absorption spectroscopy. The clusters are synthesised by sublimation from bulk vanadium(v) oxide, in combination with a pick-up by superfluid helium droplets. The latter act as reaction chambers which enable cluster growth under fully inert and solvent-free conditions. High-resolution STEM images of deposited vanadium oxide particles allowing for the determination of lattice constants, clearly indicate a dominating presence of V2O5. This finding is further supported by UV-vis absorption spectra of nanoparticles after deposition on fused silica substrates, which indicates that the oxidation state of the material is preserved over the entire process. From the results of the UV-vis measurement, the band gap of the nanosized V2O5 could be determined to be 3.3 eV. The synthesis approach provides a route to clean V2O5 clusters as it does not involve any surfactant or solvents, which is crucial for an unbiased measurement of intrinsic catalyst properties.

7.
J Chem Phys ; 149(2): 024305, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-30007398

RESUMO

The 6p 2P1/2 ← 6s 2S1/2 and 6p 2P3/2 ← 6s 2S1/2 transitions (D lines) of gold atoms embedded in superfluid helium nanodroplets have been investigated using resonant two-photon ionization spectroscopy. Both transitions are strongly blue-shifted and broadened due to the repulsive interaction between the Au valence electron and the surrounding helium. The in-droplet D lines are superimposed by the spectral signature of Au atoms relaxed into the metastable 2D states. These features are narrower than the in-droplet D lines and exhibit sharp rising edges that coincide with bare atom transitions. It is concluded that they originate from metastable 2D state AuHen exciplexes that have been ejected from the helium droplets during a relaxation process. Interestingly, the mechanism that leads to the formation of these complexes is suppressed for very large helium droplets consisting of about 2 × 106 He atoms, corresponding to a droplet diameter on the order of 50 nm. The assignment of the observed spectral features is supported by ab initio calculations employing a multiconfigurational self-consistent field method and a multi-reference configuration interaction calculation. For large helium droplets doped with Au oligomers, excitation spectra for mass channels corresponding to Aun with n = 2, 3, 4, 5, 7, and 9 are presented. The mass spectrum reveals even-odd oscillations in the number of Au atoms that constitute the oligomer, which is characteristic for coinage metal clusters. Resonances are observed close by the in-droplet D1 and D2 transitions, and the corresponding peak forms are very similar for different oligomer sizes.

8.
Phys Chem Chem Phys ; 19(22): 14718-14728, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28540939

RESUMO

Electronic excitations of an electron bound to an alkali metal ion inside a droplet of superfluid 4He are computed via a combination of helium density functional theory and the numerical integration of the Schrödinger equation for a single electron in a modified, He density dependent atomic pseudopotential. The application of a spectral method to the radial part of the valence electron wavefunction allows the computation of highly excited Rydberg states. For low principal quantum numbers, the energy required to push the electron outward is larger than the solvation energy of the ion. However, for higher principal quantum numbers the situation is reversed, which suggests the stability of a system where the ion sits inside the droplet while the valence electron orbits the nanodroplet.

9.
J Chem Phys ; 147(18): 184302, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141430

RESUMO

The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

10.
Phys Chem Chem Phys ; 18(21): 14644-53, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183104

RESUMO

Using femtosecond time-resolved extreme ultraviolet absorption spectroscopy, the dissociation dynamics of the haloalkane 1,2-dibromoethane (DBE) have been explored following strong field ionization by femtosecond near infrared pulses at intensities between 7.5 × 10(13) and 2.2 × 10(14) W cm(-2). The major elimination products are bromine atoms in charge states of 0, +1, and +2. The charge state distribution is strongly dependent on the incident NIR intensity. While the yield of neutral fragments is essentially constant for all measurements, charged fragment yields grow rapidly with increasing NIR intensities with the most pronounced effect observed for Br(++). However, the appearance times of all bromine fragments are independent of the incident field strength; these are found to be 320 fs, 70 fs, and 30 fs for Br˙, Br(+), and Br(++), respectively. Transient molecular ion features assigned to DBE(+) and DBE(++) are observed, with dynamics linked to the production of Br(+) products. Neutral Br˙ atoms are produced on a timescale consistent with dissociation of DBE(+) ions on a shallow potential energy surface. The appearance of Br(+) ions by dissociative ionization is also seen, as evidenced by the simultaneous decay of a DBE(+) ionic species. Dicationic Br(++) products emerge within the instrument response time, presumably from Coulomb explosion of triply charged DBE.

11.
J Phys Chem A ; 120(48): 9509-9518, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27933918

RESUMO

The dissociation dynamics of ferrocene are explored following strong field ionization using femtosecond time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy. Employing transitions in the vicinity of the iron 3p (M2,3) edge, the dissociation is monitored from the point of view of the iron atom. With low strong field pump intensities (≈2 × 1013 W cm-2), only ferrocenium cations are produced, and their iron 3p absorption spectrum is reported. It very closely resembles the 3p spectrum of atomic Fe+ ions but is red-shifted by 0.8 eV. With the aid of time-dependent density functional theory calculations, the spectrum is assigned to a combination of doublet and quartet spin states of ferrocenium ions. Ionization with more intense strong field pump pulses (≥6 × 1013 W cm-2) leads predominantly to the prompt production of ferrocenium ions that dissociate to give the spectral signature of bare Fe+ ions within 240 ± 80 fs. Within the temporal resolution of the experiment (≈40 fs), no spectral intermediates are observed, suggesting that the dissociation process occurs directly from the excited ferrocenium ion and that the bonds between the iron center and both cyclopentadienyl rings are broken almost simultaneously in an asynchronous concerted decay process. No evidence of slower dissociation channels is observed at a pump-probe delay of 250 ps, suggesting that all energy is very rapidly routed into dissociative states.

12.
J Chem Phys ; 145(23): 234313, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28010094

RESUMO

Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C4H4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (∼58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field induced ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se+ ions within an overall time scale of approximately 170 fs. We propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se+ and ring-open cations within an additional τ2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. The findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural rearrangements.

13.
J Chem Phys ; 143(13): 134201, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450307

RESUMO

Micrometer sized helium droplets provide an extraordinary environment for the growth of nanoparticles. The method promises great potential for the preparation of core-shell particles as well as one-dimensional nanostructures, which agglomerate along quantum vortices, without involving solvents, ligands, or additives. Using a new apparatus, which enables us to record mass spectra of heavy dopant clusters (>10(4) amu) and to produce samples for transmission electron microscopy simultaneously, we synthesize bare and bimetallic nanoparticles consisting of various materials (Au, Ni, Cr, and Ag). We present a systematical study of the growth process of clusters and nanoparticles inside the helium droplets, which can be described with a simple theoretical model.

14.
Phys Rev Lett ; 113(15): 153001, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375707

RESUMO

We present a combined experimental and theoretical study of the RbSr molecule. The experimental approach is based on the formation of RbSr molecules on helium nanodroplets. Utilizing two-photon ionization spectroscopy, an excitation spectrum ranging from 11,600 up to 23,000 cm(-1) was recorded. High level ab initio calculations of potential energy curves and transition dipole moments accompany the experiment and facilitate an assignment of transitions. We show that RbSr molecules desorb from the helium droplets upon excitation, which enables dispersed fluorescence spectroscopy of free RbSr. These spectra elucidate X(2)Σ(+) ground and excited state properties. Emission spectra originating from states corresponding to the Rb(5s(2)S) + Sr(5s5p(3)P) asymptote were recorded; spin-orbit coupling was included for the simulation. The results should provide a good basis for achieving the formation of this molecule in cold collisions, thus offering intriguing prospects for ultracold molecular physics.

15.
Phys Chem Chem Phys ; 16(40): 22373-81, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25223218

RESUMO

We report an experimental investigation of RbSr molecules attached to helium nanodroplets. The molecules are prepared on the surface of helium droplets by utilizing a sequential pickup scheme. We provide a detailed analysis of the excitation spectrum in the wavelength range 11,600-23,000 cm(-1). The spectrum has been recorded by resonance enhanced multi-photon ionization time-of-flight spectroscopy. The inherent mass sensitivity of the method allows for an unraveling of the RbSr spectrum, which is influenced by Rb and Sr dimer contributions, because of the proximity of their respective isotopologues. In addition, the vibrationally resolved 4(2)Σ(+) band was investigated using laser induced fluorescence spectroscopy. The vibronic transitions exhibit a lambda-shaped peak form, which is characteristic of excitations on helium droplets and indicative of strong coupling of the molecule to the superfluid helium environment. Furthermore, the vibrationally resolved 4(2)Σ(+) state enables the determination of molecular parameters, which are in excellent agreement with previously measured dispersed fluorescence spectra, originating from bare RbSr molecules. The assignment of recorded transitions is based on calculated transition dipole moments and potential energy curves. The theoretical results allow for the identification of transitions from the vibronic X(2)Σ(+) ground state to the 2(2)Π, 3(2)Σ(+), 4(2)Σ(+), 3(2)Π, 4(2)Π and 6(2)Σ(+) states. The detailed investigation of RbSr on helium droplets provides a solid basis for further high resolution gas phase studies of this diatomic molecule that holds promise in the area of cold molecular physics.

16.
J Phys Chem A ; 118(37): 8373-9, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24708058

RESUMO

We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z(7)P(2,3,4)° ← a(7)S3 and y(7)P(2,3,4)° ← a(7)S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*­He(n) exciplexes. For the y(7)P(2,3,4)° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z(5)P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a(7)S3) and metastable quintet state (a(5)S2), which we attribute to a photoinduced fast excitation­relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets.

17.
J Chem Phys ; 141(23): 234309, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25527937

RESUMO

Excited states and the ground state of the diatomic molecule RbSr were calculated by post Hartree-Fock molecular orbital theory up to 22 000 cm(-1). We applied a multireference configuration interaction calculation based on multiconfigurational self-consistent field wave functions. Both methods made use of effective core potentials and core polarization potentials. Potential energy curves, transition dipole moments, and permanent electric dipole moments were determined for RbSr and could be compared with other recent calculations. We found a good agreement with experimental spectra, which have been obtained recently by helium nanodroplet isolation spectroscopy. For the lowest two asymptotes (Rb (5s (2)S) + Sr (5s4d (3)P°) and Rb (5p (2)P°) + Sr (5s(2) (1)S)), which exhibit a significant spin-orbit coupling, we included relativistic effects by two approaches, one applying the Breit-Pauli Hamiltonian to the multireference configuration interaction wave functions, the other combining a spin-orbit Hamiltonian and multireference configuration interaction potential energy curves. Using the results for the relativistic potential energy curves that correspond to the Rb (5s (2)S) + Sr (5s4d (3)P°) asymptote, we have simulated dispersed fluorescence spectra as they were recently measured in our lab. The comparison with experimental data allows to benchmark both methods and demonstrate that spin-orbit coupling has to be included for the lowest states of RbSr.

18.
Adv Healthc Mater ; 13(2): e2302348, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37807640

RESUMO

Many of the peculiar properties of the vasculature are related to the arrangement of anisotropic proteinaceous fibers in vessel walls. Understanding and imitating these arrangements can potentially lead to new therapies for cardiovascular diseases. These can be pre-surgical planning, for which patient-specific ex vivo anatomical models for endograft testing are of interest. Alternatively, therapies can be based on tissue engineering, for which degradable in vitro cell growth substrates are used to culture replacement parts. In both cases, materials are desirable that imitate the biophysical properties of vessels, including their tubular shapes and compliance. This work contributes to these demands by offering methods for the manufacturing of anisotropic 3D-printed nanofibrous tubular structures that have similar biophysical properties as porcine aortae, that are biocompatible, and that allow for controlled nutrient diffusion. Tubes of various sizes with axial, radial, or alternating nanofiber orientation along the blood flow direction are manufactured by a customized method. Blood pressure-resistant, compliant, stable, and cell culture-compatible structures are obtained, that can be degraded in vitro on demand. It is suggested that these healthcare materials can contribute to the next generation of cardiovascular therapies of ex vivo pre-surgical planning or in vitro cell culture.


Assuntos
Materiais Biocompatíveis , Nanofibras , Animais , Humanos , Suínos , Materiais Biocompatíveis/química , Nanofibras/química , Engenharia Tecidual/métodos , Técnicas de Cultura de Células/métodos , Impressão Tridimensional , Alicerces Teciduais/química
19.
J Phys Chem A ; 117(50): 13719-31, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24028555

RESUMO

We report on the formation of mixed alkali-alkaline earth molecules (LiCa) on helium nanodroplets and present a comprehensive experimental and theoretical study of the ground and excited states of LiCa. Resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) spectroscopy and laser induced fluorescence (LIF) spectroscopy were used for the experimental investigation of LiCa from 15000 to 25500 cm(-1). The 4(2)Σ(+) and 3(2)Π states show a vibrational structure accompanied by distinct phonon wings, which allows us to determine molecular parameters as well as to study the interaction of the molecule with the helium droplet. Higher excited states (4(2)Π, 5(2)Σ(+), 5(2)Π, and 6(2)Σ(+)) are not vibrationally resolved and vibronic transitions start to overlap. The experimental spectrum is well reproduced by high-level ab initio calculations. By using a multireference configuration interaction (MRCI) approach, we calculated the 19 lowest lying potential energy curves (PECs) of the LiCa molecule. On the basis of these calculations, we could identify previously unobserved transitions. Our results demonstrate that the helium droplet isolation approach is a powerful method for the characterization of tailor-made alkali-alkaline earth molecules. In this way, important contributions can be made to the search for optimal pathways toward the creation of ultracold alkali-alkaline earth ground state molecules from the corresponding atomic species. Furthermore, a test for PECs calculated by ab initio methods is provided.

20.
J Phys Chem A ; 117(46): 11866-73, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23895106

RESUMO

We report on the spectroscopic investigation of lithium atoms and lithium dimers in their triplet manifold on the surface of helium nanodroplets (He(N)). We present the excitation spectrum of the 3p ← 2s and 3d ← 2s two-photon transitions for single Li atoms on He(N). The atoms are excited from the 2S(Σ) ground state into Δ, Π, and Σ pseudodiatomic molecular substates. Excitation spectra are recorded by resonance enhanced multiphoton ionization time-of-flight (REMPI-TOF) mass spectroscopy, which allows an investigation of the exciplex (Li*­He(m), m = 1­3) formation process in the Li­He(N) system. Electronic states are shifted and broadened with respect to free atom states, which is explained within the pseudodiatomic model. The assignment is assisted by theoretical calculations, which are based on the Orsay­Trento density functional where the interaction between the helium droplet and the lithium atom is introduced by a pairwise additive approach. When a droplet is doped with more than one alkali atom, the fragility of the alkali­He(N) systems leads preferably to the formation of high-spin molecules on the droplets. We use this property of helium nanodroplets for the preparation of Li dimers in their triplet ground state (13Σu(+)). The excitation spectrum of the 23Πg(ν' = 0­11) ← 13Σu(+)(ν″ = 0) transition is presented. The interaction between the molecule and the droplet manifests in a broadening of the transitions with a characteristic asymmetric form. The broadening extends to the blue side of each vibronic level, which is caused by the simultaneous excitation of the molecule and vibrations of the droplet (phonons). The two isotopes of Li form 6Li2 and 7Li2 as well as isotope mixed 6Li7Li molecules on the droplet surface. By using REMPI-TOF mass spectroscopy, isotope-dependent effects could be studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA