Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 99(3): 470-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26202476

RESUMO

As it became evident recently, extracellular DNA could be a versatile nutrient source of the facultative pathogen Vibrio cholerae along the different stages of its life cycle. By the use of two extracellular nucleases and periplasmic phosphatases, V. cholerae degrades extracellular DNA to nucleosides. In this study, we investigated the nucleoside uptake via identification and characterization of VCA0179, VC1953 and VC2352 representing the three nucleoside transport systems in V. cholerae. Based on our results VC2352 seems to be the dominant nucleoside transporter. Nevertheless, all three transporters are functional and can contribute to the utilization of nucleosides as a sole source of carbon or nitrogen. We found that the transcriptional activity of these three distal genes is equally promoted or antagonized by CRP or CytR respectively. Finally, mutants impaired for nucleoside uptake exhibit decreased transition fitness from the host into low carbon environments along the life cycle of V. cholerae.


Assuntos
Cólera/microbiologia , Nucleosídeos/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cólera/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Vibrio cholerae/genética
2.
Cancer Metab ; 12(1): 9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515202

RESUMO

Serine and glycine give rise to important building blocks in proliferating cells. Both amino acids are either synthesized de novo or taken up from the extracellular space. In lung cancer, serine synthesis gene expression is variable, yet, expression of the initial enzyme, phosphoglycerate dehydrogenase (PHGDH), was found to be associated with poor prognosis. While the contribution of de novo synthesis to serine pools has been shown to be enhanced by serine starvation, the impact of glucose deprivation, a commonly found condition in solid cancers is poorly understood. Here, we utilized a stable isotopic tracing approach to assess serine and glycine de novo synthesis and uptake in different lung cancer cell lines and normal bronchial epithelial cells in variable serine, glycine, and glucose conditions. Under low glucose supplementation (0.2 mM, 3-5% of normal plasma levels), serine de novo synthesis was maintained or even activated. As previously reported, also gluconeogenesis supplied carbons from glutamine to serine and glycine under these conditions. Unexpectedly, low glucose treatment consistently enhanced serine to glycine conversion, along with an up-regulation of the mitochondrial one-carbon metabolism enzymes, serine hydroxymethyltransferase (SHMT2) and methylenetetrahydrofolate dehydrogenase (MTHFD2). The relative contribution of de novo synthesis greatly increased in low serine/glycine conditions. In bronchial epithelial cells, adaptations occurred in a similar fashion as in cancer cells, but serine synthesis and serine to glycine conversion, as assessed by label enrichments and gene expression levels, were generally lower than in (PHGDH positive) cancer cells. In summary, we found a variable contribution of glucose or non-glucose carbon sources to serine and glycine and a high adaptability of the downstream one-carbon metabolism pathway to variable glucose supply.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA