Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(6): 2864-2869, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31988113

RESUMO

Agrobiodiversity-the variation within agricultural plants, animals, and practices-is often suggested as a way to mitigate the negative impacts of climate change on crops [S. A. Wood et al., Trends Ecol. Evol. 30, 531-539 (2015)]. Recently, increasing research and attention has focused on exploiting the intraspecific genetic variation within a crop [Hajjar et al., Agric. Ecosyst. Environ. 123, 261-270 (2008)], despite few relevant tests of how this diversity modifies agricultural forecasts. Here, we quantify how intraspecific diversity, via cultivars, changes global projections of growing areas. We focus on a crop that spans diverse climates, has the necessary records, and is clearly impacted by climate change: winegrapes (predominantly Vitis vinifera subspecies vinifera). We draw on long-term French records to extrapolate globally for 11 cultivars (varieties) with high diversity in a key trait for climate change adaptation-phenology. We compared scenarios where growers shift to more climatically suitable cultivars as the climate warms or do not change cultivars. We find that cultivar diversity more than halved projected losses of current winegrowing areas under a 2 °C warming scenario, decreasing areas lost from 56 to 24%. These benefits are more muted at higher warming scenarios, reducing areas lost by a third at 4 °C (85% versus 58%). Our results support the potential of in situ shifting of cultivars to adapt agriculture to climate change-including in major winegrowing regions-as long as efforts to avoid higher warming scenarios are successful.


Assuntos
Mudança Climática , Vitis/crescimento & desenvolvimento , Adaptação Fisiológica , Biodiversidade , Estações do Ano , Vitis/fisiologia
2.
Arch Virol ; 165(8): 1849-1853, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462285

RESUMO

To characterize their virome, double stranded RNAs extracted from scrapings of two Iranian grapevine varieties held in the Vassal-Montpellier Grapevine Biological Resources Center were analysed by high-throughput sequencing. In addition to several well-known grapevine viruses, divergent isolates of the newly described grapevine Kizil Sapak virus were identified in both accessions. Four complete genome sequences were determined, as well as two additional partial sequences (1,580 and 3,849 nucleotides long). These genomic sequences highlight the molecular diversity of this poorly known virus. In view of the absence of amplification of the GKSV isolates characterized here using the published primer pair, novel degenerate, polyvalent primers were designed, providing a more robust diagnosis.


Assuntos
Vírus/genética , Vitis/virologia , Vírus de DNA/genética , Genoma Viral/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Irã (Geográfico) , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/virologia , RNA de Cadeia Dupla/genética , Sequenciamento Completo do Genoma
3.
Plant Physiol ; 177(3): 1234-1253, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29853599

RESUMO

Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the SEED DEVELOPMENT INHIBITOR (SDI) locus is the usual source of seedlessness in commercial grapevine (Vitis vinifera) cultivars, the underlying sdi mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine-mapping in two 'Crimson Seedless'-derived F1 mapping populations confirmed the major effect of the SDI locus and delimited the sdi mutation to a 323-kb region on chromosome 18. RNA-sequencing comparing seed traces of seedless and seeds of seeded F1 individuals identified processes triggered during sdi-determined seed abortion, including the activation of salicylic acid-dependent autoimmunity. The RNA-sequencing data set was investigated for candidate genes, and while no evidence for causal cis-acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the sdi fine-mapping interval. Targeted resequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the arginine-197-to-leucine substitution in the seed morphogenesis regulator gene AGAMOUS-LIKE11 (VviAGL11) was fully linked with stenospermocarpy. The concurrent postzygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in VviAGL11 is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding.


Assuntos
Proteínas de Domínio MADS/genética , Mutação de Sentido Incorreto , Proteínas de Plantas/genética , Sementes/genética , Vitis/fisiologia , Substituição de Aminoácidos , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Locos de Características Quantitativas , Ácido Salicílico/metabolismo , Sementes/crescimento & desenvolvimento , Vitis/genética
4.
Nucleic Acids Res ; 44(16): 7777-91, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27422873

RESUMO

The archaea-/eukaryote-specific 40S-ribosomal-subunit protein S31 is expressed as an ubiquitin fusion protein in eukaryotes and consists of a conserved body and a eukaryote-specific N-terminal extension. In yeast, S31 is a practically essential protein, which is required for cytoplasmic 20S pre-rRNA maturation. Here, we have studied the role of the N-terminal extension of the yeast S31 protein. We show that deletion of this extension partially impairs cell growth and 40S subunit biogenesis and confers hypersensitivity to aminoglycoside antibiotics. Moreover, the extension harbours a nuclear localization signal that promotes active nuclear import of S31, which associates with pre-ribosomal particles in the nucleus. In the absence of the extension, truncated S31 inefficiently assembles into pre-40S particles and two subpopulations of mature small subunits, one lacking and another one containing truncated S31, can be identified. Plasmid-driven overexpression of truncated S31 partially suppresses the growth and ribosome biogenesis defects but, conversely, slightly enhances the hypersensitivity to aminoglycosides. Altogether, these results indicate that the N-terminal extension facilitates the assembly of S31 into pre-40S particles and contributes to the optimal translational activity of mature 40S subunits but has only a minor role in cytoplasmic cleavage of 20S pre-rRNA at site D.


Assuntos
Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Mutação/genética , Sinais de Localização Nuclear/metabolismo , Fenótipo , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento
5.
BMC Plant Biol ; 16: 74, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27005772

RESUMO

BACKGROUND: As for many crops, new high-quality grapevine varieties requiring less pesticide and adapted to climate change are needed. In perennial species, breeding is a long process which can be speeded up by gaining knowledge about quantitative trait loci linked to agronomic traits variation. However, due to the long juvenile period of these species, establishing numerous highly recombinant populations for high resolution mapping is both costly and time-consuming. Genome wide association studies in germplasm panels is an alternative method of choice, since it allows identifying the main quantitative trait loci with high resolution by exploiting past recombination events between cultivars. Such studies require adequate panel design to represent most of the available genetic and phenotypic diversity. Assessing linkage disequilibrium extent and panel power is also needed to determine the marker density required for association studies. RESULTS: Starting from the largest grapevine collection worldwide maintained in Vassal (France), we designed a diversity panel of 279 cultivars with limited relatedness, reflecting the low structuration in three genetic pools resulting from different uses (table vs wine) and geographical origin (East vs West), and including the major founders of modern cultivars. With 20 simple sequence repeat markers and five quantitative traits, we showed that our panel adequately captured most of the genetic and phenotypic diversity existing within the entire Vassal collection. To assess linkage disequilibrium extent and panel power, we genotyped single nucleotide polymorphisms: 372 over four genomic regions and 129 distributed over the whole genome. Linkage disequilibrium, measured by correlation corrected for kinship, reached 0.2 for a physical distance between 9 and 458 Kb depending on genetic pool and genomic region, with varying size of linkage disequilibrium blocks. This panel achieved reasonable power to detect associations between traits with high broad-sense heritability (> 0.7) and causal loci with intermediate allelic frequency and strong effect (explaining > 10 % of total variance). CONCLUSIONS: Our association panel constitutes a new, highly valuable resource for genetic association studies in grapevine, and deserves dissemination to diverse field and greenhouse trials to gain more insight into the genetic control of many agronomic traits and their interaction with the environment.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla/métodos , Vitis/genética , Genes de Plantas , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie
6.
Genetica ; 143(3): 373-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25896368

RESUMO

The MybA1 gene in the genus Vitis encodes a transcription factor, belonging to the R2R3 Myb family, that controls the last steps in the anthocyanins biosynthesis pathway. Polymorphism within MybA1 has been associated with color variation in berries of V. vinifera and other Vitis species. In this work, we analyzed the sequence variation in MybA1 both in the subg. Muscadinia and in an extended set of Asian, American and European genotypes of subg. Vitis. Our aims were to infer the evolution of this gene during the speciation process and to identify polymorphisms that could potentially generate changes in gene regulation. The results show that MybA1 experienced many insertions and deletions in non-coding regions but also in the third exon sequence. Owing to the larger set of Vitis species compared here, new indels were identified and the origin of previously described indels was reconsidered. A large number of single nucleotide polymorphisms were found in non-coding regions but also in the sequence coding for the R2R3 domain and the C terminal part of the protein. Some of these changes led to amino acid substitutions and therefore could have modified MybA1 protein activity. Bayesian phylogenetic analysis of all polymorphisms did not provide a consensus tree depicting the geographical partitioning of the species but allowed highlighting several species relationships within subgenus Vitis. Finally, the evolutionary events described could be useful to gain more insight into the role of MybA1 for anthocyanin biosynthesis in grapevine.


Assuntos
Evolução Molecular , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Vitis/genética , Substituição de Aminoácidos , Antocianinas/biossíntese , Antocianinas/genética , Teorema de Bayes , DNA de Plantas/genética , Europa (Continente) , Éxons , Genótipo , Mutação INDEL , América do Norte , Filogenia , Pigmentação/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
Nucleic Acids Res ; 41(21): 9651-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23963697

RESUMO

Mediator is a prominent multisubunit coactivator that functions as a bridge between gene-specific activators and the basal RNA polymerase (Pol) II initiation machinery. Here, we study the poorly documented role of Mediator in basal, or activator-independent, transcription in vivo. We show that Mediator is still present at the promoter when the Pol II machinery is recruited in the absence of an activator, in this case through a direct fusion between a basal transcription factor and a heterologous DNA binding protein bound to the promoter. Moreover, transcription resulting from activator-independent recruitment of the Pol II machinery is impaired by inactivation of the essential Mediator subunit Med17 due to the loss of Pol II from the promoter. Our results strongly support that Mediator is an integral component of the minimal machinery essential in vivo for stable Pol II association with the promoter.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Transcrição Gênica , Cisteína Sintase/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição de Fator Regulador X , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIIB/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
8.
BMC Plant Biol ; 14: 229, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25179565

RESUMO

BACKGROUND: In Vitis vinifera L., domestication induced a dramatic change in flower morphology: the wild sylvestris subspecies is dioecious while hermaphroditism is largely predominant in the domesticated subsp. V. v. vinifera. The characterisation of polymorphisms in genes underlying the sex-determining chromosomal region may help clarify the history of domestication in grapevine and the evolution of sex chromosomes in plants. In the genus Vitis, sex determination is putatively controlled by one major locus with three alleles, male M, hermaphrodite H and female F, with an allelic dominance M > H > F. Previous genetic studies located the sex locus on chromosome 2. We used DNA polymorphisms of geographically diverse V. vinifera genotypes to confirm the position of this locus, to characterise the genetic diversity and traces of selection in candidate genes, and to explore the origin of hermaphroditism. RESULTS: In V. v. sylvestris, a sex-determining region of 154.8 kb, also present in other Vitis species, spans less than 1% of chromosome 2. It displays haplotype diversity, linkage disequilibrium and differentiation that typically correspond to a small XY sex-determining region with XY males and XX females. In male alleles, traces of purifying selection were found for a trehalose phosphatase, an exostosin and a WRKY transcription factor, with strikingly low polymorphism levels between distant geographic regions. Both diversity and network analysis revealed that H alleles are more closely related to M than to F alleles. CONCLUSIONS: Hermaphrodite alleles appear to derive from male alleles of wild grapevines, with successive recombination events allowing import of diversity from the X into the Y chromosomal region and slowing down the expansion of the region into a full heteromorphic chromosome. Our data are consistent with multiple domestication events and show traces of introgression from other Asian Vitis species into the cultivated grapevine gene pool.


Assuntos
Cromossomos de Plantas , Organismos Hermafroditas/genética , Seleção Genética , Processos de Determinação Sexual , Vitis/genética , Alelos , Produtos Agrícolas/genética , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo Genético
9.
BMC Plant Biol ; 14: 209, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25091083

RESUMO

BACKGROUND: Interaction between TERMINAL FLOWER 1 (TFL1) and LEAFY (LFY) seem to determine the inflorescence architecture in Arabidopsis. In a parallel way, overexpression of VvTFL1A, a grapevine TFL1 homolog, causes delayed flowering and production of a ramose cluster in the reiterated reproductive meristem (RRM) somatic variant of cultivar Carignan. To analyze the possible contribution of this gene to cluster phenotypic variation in a diversity panel of cultivated grapevine (Vitis vinifera L. subsp. vinifera) its nucleotide diversity was characterized and association analyses among detected sequence polymorphisms and phenology and cluster traits was carried out. RESULTS: A total of 3.6 kb of the VvTFL1A gene, including its promoter, was sequenced in a core collection of 140 individuals designed to maximize phenotypic variation at agronomical relevant traits. Nucleotide variation for VvTFL1A within this collection was higher in the promoter and intron sequences than in the exon regions; where few polymorphisms were located in agreement with a high conservation of coding sequence. Characterization of the VvTFL1A haplotype network identified three major haplogroups, consistent with the geographic origins and the use of the cultivars that could correspond to three major ancestral alleles or evolutionary branches, based on the existence of mutations in linkage disequilibrium. Genetic association studies with cluster traits revealed the presence of major INDEL polymorphisms, explaining 16%, 13% and 25% of flowering time, cluster width and berry weight, respectively, and also structuring the three haplogroups. CONCLUSIONS: At least three major VvTFL1A haplogroups are present in cultivated grapevines, which are defined by the presence of three main polymorphism LD blocks and associated to characteristic phenotypic values for flowering time, cluster width and berry size. Phenotypic differences between haplogroups are consistent with differences observed between Eastern and Western grapevine cultivars and could result from the use of different genetic pools in the domestication process as well as different selection pressures on the development of table and wine cultivars, respectively. Altogether, these results are coherent with previous classifications of grapevine phenotypic diversity mainly based on cluster and berry morphotypes as well as with recent results on the structure of genetic diversity in cultivated grapevine.


Assuntos
Topos Floridos/fisiologia , Vitis/genética , Genes de Plantas , Haplótipos , Polimorfismo Genético , Análise de Sequência de DNA
10.
BMC Plant Biol ; 13: 25, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23394135

RESUMO

BACKGROUND: Grapevine (Vitis vinifera subsp. vinifera) is one of the most important and ancient horticultural plants in the world. Domesticated about 8-10,000 years ago in the Eurasian region, grapevine evolved from its wild relative (V. vinifera subsp. sylvestris) into very diverse and heterozygous cultivated forms. In this work we study grapevine genetic structure in a large sample of cultivated varieties, to interpret the wide diversity at morphological and molecular levels and link it to cultivars utilization, putative geographic origin and historical events. RESULTS: We analyzed the genetic structure of cultivated grapevine using a dataset of 2,096 multi-locus genotypes defined by 20 microsatellite markers. We used the Bayesian approach implemented in the STRUCTURE program and a hierarchical clustering procedure based on Ward's method to assign individuals to sub-groups. The analysis revealed three main genetic groups defined by human use and geographic origin: a) wine cultivars from western regions, b) wine cultivars from the Balkans and East Europe, and c) a group mainly composed of table grape cultivars from Eastern Mediterranean, Caucasus, Middle and Far East countries. A second structure level revealed two additional groups, a geographic group from the Iberian Peninsula and Maghreb, and a group comprising table grapes of recent origins from Italy and Central Europe. A large number of admixed genotypes were also identified. Structure clusters regrouped together a large proportion of family-related genotypes. In addition, Ward's method revealed a third level of structure, corresponding either to limited geographic areas, to particular grape use or to family groups created through artificial selection and breeding. CONCLUSIONS: This study provides evidence that the cultivated compartment of Vitis vinifera L. is genetically structured. Genetic relatedness of cultivars has been shaped mostly by human uses, in combination with a geographical effect. The finding of a large portion of admixed genotypes may be the trace of both large human-mediated exchanges between grape-growing regions throughout history and recent breeding.


Assuntos
Geografia , Vitis/genética , Variação Genética , Genética Populacional , Genótipo , Humanos
11.
BMC Plant Biol ; 13: 149, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24093598

RESUMO

BACKGROUND: Cultivated grapevines, Vitis vinifera subsp. sativa, evolved from their wild relative, V. vinifera subsp. sylvestris. They were domesticated in Central Asia in the absence of the powdery mildew fungus, Erysiphe necator, which is thought to have originated in North America. However, powdery mildew resistance has previously been discovered in two Central Asian cultivars and in Chinese Vitis species. RESULTS: A set of 380 unique genotypes were evaluated with data generated from 34 simple sequence repeat (SSR) markers. The set included 306 V. vinifera cultivars, 40 accessions of V. vinifera subsp. sylvestris, and 34 accessions of Vitis species from northern Pakistan, Afghanistan and China. Based on the presence of four SSR alleles previously identified as linked to the powdery mildew resistance locus, Ren1, 10 new mildew resistant genotypes were identified in the test set: eight were V. vinifera cultivars and two were V. vinifera subsp. sylvestris based on flower and seed morphology. Sequence comparison of a 620 bp region that includes the Ren1-linked allele (143 bp) of the co-segregating SSR marker SC8-0071-014, revealed that the ten newly identified genotypes have sequences that are essentially identical to the previously identified mildew resistant V. vinifera cultivars: 'Kishmish vatkana' and 'Karadzhandal'. Kinship analysis determined that three of the newly identified powdery mildew resistant accessions had a relationship with 'Kishmish vatkana' and 'Karadzhandal', and that six were not related to any other accession in this study set. Clustering procedures assigned accessions into three groups: 1) Chinese species; 2) a mixed group of cultivated and wild V. vinifera; and 3) table grape cultivars, including nine of the powdery mildew resistant accessions. Gene flow was detected among the groups. CONCLUSIONS: This study provides evidence that powdery mildew resistance is present in V. vinifera subsp. sylvestris, the dioecious wild progenitor of the cultivated grape. Four first-degree parent progeny relationships were discovered among the hermaphroditic powdery mildew resistant cultivars, supporting the existence of intentional grape breeding efforts. Although several Chinese grape species are resistant to powdery mildew, no direct genetic link to the resistance found in V. vinifera could be established.


Assuntos
Ascomicetos/fisiologia , Resistência à Doença/fisiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Vitis/fisiologia , Resistência à Doença/genética , Genótipo , Doenças das Plantas/genética , Vitis/genética
12.
Theor Appl Genet ; 126(2): 401-14, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23015217

RESUMO

Inheritance of nuclear microsatellite markers (nSSR) has been proved to be a powerful tool to verify or uncover the parentage of grapevine cultivars. The aim of the present study was to undertake an extended parentage analysis using a large sample of Vitis vinifera cultivars held in the INRA "Domaine de Vassal" Grape Germplasm Repository (France). A dataset of 2,344 unique genotypes (i.e. cultivars without synonyms, clones or mutants) identified using 20 nSSR was analysed with FAMOZ software. Parentages showing a logarithm of odds score higher than 18 were validated in relation to the historical data available. The analysis first revealed the full parentage of 828 cultivars resulting in: (1) 315 original full parentages uncovered for traditional cultivars, (2) 100 full parentages confirming results established with molecular markers in prior papers and 32 full parentages that invalidated prior results, (3) 255 full parentages confirming pedigrees as disclosed by the breeders and (4) 126 full parentages that invalidated breeders' data. Second, incomplete parentages were determined in 1,087 cultivars due to the absence of complementary parents in our cultivar sample. Last, a group of 276 genotypes showed no direct relationship with any other cultivar in the collection. Compiling these results from the largest set of parentage data published so far both enlarges and clarifies our knowledge of the genetic constitution of cultivated V. vinifera germplasm. It also allows the identification of the main genitors involved in varietal assortment evolution and grapevine breeding.


Assuntos
Variação Genética/genética , Repetições de Microssatélites/genética , Característica Quantitativa Herdável , Vitis/genética , Algoritmos , Genótipo , Software
13.
PLoS One ; 18(7): e0283324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37523393

RESUMO

The grape genus Vitis L. includes the domesticated V. vinifera, which is one of the most important fruit crop, and also close relatives recognized as valuable germplasm resources for improving cultivars. To resolve some standing problems in the species relationships within the Vitis genus we analyzed diversity in a set of 90 accessions comprising most of Vitis species and some putative hybrids. We discovered single nucleotide polymorphisms (SNPs) in SANGER sequences of twelve loci and genotyped accessions at a larger number of SNPs using a previously developed SNP array. Our phylogenic analyses consistently identified: three clades in North America, one in East Asia, and one in Europe corresponding to V. vinifera. Using heterozygosity measurement, haplotype reconstruction and chloroplast markers, we identified the hybrids existing within and between clades. The species relationships were better assessed after discarding these hybrids from analyses. We also studied the relationships between phylogeny and morphological traits and found that several traits significantly correlated with the phylogeny. The American clade that includes important species such as V. riparia and V. rupestris showed a major divergence with all other clades based on both DNA polymorphisms and morphological traits.


Assuntos
Vitis , Vitis/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Genótipo , América do Norte
14.
Science ; 379(6635): 892-901, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862793

RESUMO

We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.


Assuntos
Evolução Biológica , Domesticação , Vitis , Humanos , Agricultura , Ásia Ocidental , Ecótipo , Fenótipo , Vitis/genética , Aclimatação
15.
Theor Appl Genet ; 124(2): 277-86, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21947344

RESUMO

The Rpv3 locus is a major determinant of downy mildew resistance in grapevine (Vitis spp.). A selective sweep at this locus was revealed by the DNA genotyping of 580 grapevines, which include a highly diverse set of 265 European varieties that predated the spread of North American mildews, 82 accessions of wild species, and 233 registered breeding lines with North American ancestry produced in the past 150 years. Artificial hybridisation and subsequent phenotypic selection favoured a few Rpv3 haplotypes that were introgressed from wild vines and retained in released varieties. Seven conserved haplotypes in five descent groups of resistant varieties were traced back to their founders: (1) 'Munson', a cross between two of Hermann Jaeger's selections of V. rupestris and V. lincecumii made in the early 1880s in Missouri, (2) V. rupestris 'Ganzin', first utilised for breeding in 1879 by Victor Ganzin in France, (3) 'Noah', selected in 1869 from intermingled accessions of V. riparia and V. labrusca by Otto Wasserzieher in Illinois, (4) 'Bayard', a V. rupestris × V. labrusca offspring generated in 1882 by George Couderc in France, and (5) a wild form closely related to V. rupestris accessions in the Midwestern United States and introgressed into 'Seibel 4614' in the 1880s by Albert Seibel in France. Persistence of these Rpv3 haplotypes across many of the varieties generated by human intervention indicates that a handful of vines with prominent resistance have laid the foundation for modern grape breeding. A rampant hot spot of NB-LRR genes at the Rpv3 locus has provided a distinctive advantage for the adaptation of native North American grapevines to withstand downy mildew. The coexistence of multiple resistance alleles or paralogues in the same chromosomal region but in different haplotypes counteracts efforts to pyramidise them in a diploid individual via conventional breeding.


Assuntos
Cruzamento/métodos , Resistência à Doença/genética , Genes de Plantas/genética , Oomicetos , Doenças das Plantas/microbiologia , Seleção Genética , Vitis/genética , Genótipo , Haplótipos/genética , Repetições de Microssatélites/genética , Linhagem , Doenças das Plantas/genética
16.
Front Plant Sci ; 13: 942148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340348

RESUMO

Grape volatile organic compounds (VOCs) play an important role in the winemaking industry due to their contribution to wine sensory characteristics. Another important role in the winemaking industry have the grapevine varieties used in specific regions or countries for wine production. Due to the high variability of grapevine germplasm, grapevine varieties are as classified based on their genetic and geographical origin into genetic-geographic groups (GEN-GEO). The aim of this research was to investigate VOCs in 50 red grapevine varieties belonging to different GEN-GEO groups. The study included varieties from groups C2 (Italy and France), C7 (Croatia), and C8 (Spain and Portugal). The analysis of VOCs was performed by SPME-Arrow-GC/MS directly from grape skins. The analyzed VOCs included aldehydes, ketones, acids, alcohols, monoterpenes, and sesquiterpenes. The most abundant VOCs were aldehydes and alcohols, while the most numerous were sesquiterpenes. The most abundant compounds, aldehydes and alcohols, were found to be (E)-2-hexenal, hexenal, (E)-2-hexen-1-ol, and 1-hexanol. Using discriminant analysis, the GEN-GEO groups were separated based on their volatile profile. Some of the individual compounds contributing to the discrimination were found in relatively small amounts, such as benzoic acid, (E,E)-2,4-hexadienal, 4-pentenal, and nonanoic acid. The groups were also discriminated by their overall volatile profile: group C2 was characterized by a higher content of aldehydes and alcohols, and group C8 was characterized by a higher content of sesquiterpenes and acids. Group C7 was characterized by all low amount of all classes of VOCs.

17.
G3 (Bethesda) ; 12(7)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35485948

RESUMO

To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
18.
Sci Rep ; 11(1): 21381, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725430

RESUMO

The pip, as the most common grapevine archaeological remain, is extensively used to document past viticulture dynamics. This paper uses state of the art morphological analyses to analyse the largest reference collection of modern pips to date, representative of the present-day diversity of the domesticated grapevine from Western Eurasia. We tested for a costructure between the form of the modern pips and the: destination use (table/wine), geographical origins, and populational labels obtained through two molecular approaches. Significant structuring is demonstrated for each of these cofactors and for the first time it is possible to infer properties of varieties without going through the parallel with modern varieties. These results provide a unique tool that can be applied to archaeological pips in order to reconstruct the spatio-temporal dynamics of grape diversity on a large scale and to better understand viticulture history. The models obtained were then used to infer the affiliations with archaeobotanical remains recovered in Mas de Vignoles XIV (Nîmes, France). The results show a twofold shift between the Late Iron Age and the Middle Ages, from table to wine grape varieties and from eastern to western origins which correlates with previous palaeogenomic results.

19.
Sci Rep ; 11(1): 2305, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504834

RESUMO

A crucial aspect of viticulture is finally unveiled as the historical dynamics of its agrobiodiversity are described in the Champagne region for the first time. Outline analyses were carried out to compare the morphology of archaeological grape seeds from Troyes and Reims (first c. AD to fifteenth c. AD) with that of a reference collection of modern seeds, including wild vines and traditional grape varieties, believed to be ancient and characteristic of the French vine heritage. This allows us to document the chronological dynamics of the use of the wild Vitis type and of the diversity of the varieties used, based on morphological disparity. After showing the existence of morphological types corresponding to geographical groups, we highlight a geochronological dynamic. Our results show that the wild type is used throughout the series, up to the Middle Ages. In addition, domestic forms, morphologically related to southern varietal groups, are very early involved in the Champagne grape agrodiversity. The groups corresponding to the typical grape varieties of today do not appear until the second millennium. These previously unsuspected dynamics are discussed in light of the social, societal and climatic changes documented for the period.

20.
Mol Microbiol ; 72(1): 69-84, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19210616

RESUMO

The post-translational modifier ubiquitin is generated exclusively by proteolytic cleavage of precursor proteins. In Saccharomyces cerevisiae, cleavage of the linear precursor proteins releases ubiquitin and the C-terminally fused ribosomal proteins Rpl40 (Ubi1/2 precursor) and Rps31 (Ubi3 precursor), which are part of mature 60S and 40S ribosomal subunits respectively. In this study, we analysed the effects of ubi3 mutations that interfere with cleavage of the ubiquitin-Rps31 fusion protein. Strikingly, the lethal ubi3+P77 mutation, which abolished cleavage almost completely, led to a rapid G1 cell cycle arrest upon genetic depletion of wild-type UBI3. Under these conditions, the otherwise unstable Ubi3+P77 protein was efficiently assembled into translation-competent 40S ribosomal subunits. In contrast to the cleavage-affecting mutations, deletion of the ubiquitin moiety from UBI3 led to a decrease in 40S ribosomal subunits and to the incorporation of the 20S pre-rRNA into polyribosomes. Altogether, our findings provide additional evidence that the initial presence of the ubiquitin moiety of Ubi3 contributes to the efficient production of 40S ribosomal subunits and they suggest that ubiquitin release is a prerequisite for their functional integrity.


Assuntos
Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ciclo Celular , Mutação , Polirribossomos/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA