Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 148(6): 1293-307, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22424236

RESUMO

Personalized medicine is expected to benefit from combining genomic information with regular monitoring of physiological states by multiple high-throughput methods. Here, we present an integrative personal omics profile (iPOP), an analysis that combines genomic, transcriptomic, proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. Our iPOP analysis revealed various medical risks, including type 2 diabetes. It also uncovered extensive, dynamic changes in diverse molecular components and biological pathways across healthy and diseased conditions. Extremely high-coverage genomic and transcriptomic data, which provide the basis of our iPOP, revealed extensive heteroallelic changes during healthy and diseased states and an unexpected RNA editing mechanism. This study demonstrates that longitudinal iPOP can be used to interpret healthy and diseased states by connecting genomic information with additional dynamic omics activity.


Assuntos
Genoma Humano , Genômica , Medicina de Precisão , Diabetes Mellitus Tipo 2/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Metabolômica , Pessoa de Meia-Idade , Mutação , Proteômica , Vírus Sinciciais Respiratórios/isolamento & purificação , Rhinovirus/isolamento & purificação
2.
Nature ; 489(7414): 91-100, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22955619

RESUMO

Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.


Assuntos
DNA/genética , Enciclopédias como Assunto , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Alelos , Linhagem Celular , Fator de Transcrição GATA1/metabolismo , Perfilação da Expressão Gênica , Genômica , Humanos , Células K562 , Especificidade de Órgãos , Fosforilação/genética , Polimorfismo de Nucleotídeo Único/genética , Mapas de Interação de Proteínas , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Seleção Genética/genética , Sítio de Iniciação de Transcrição
3.
Am J Obstet Gynecol ; 212(3): 332.e1-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25479548

RESUMO

OBJECTIVE: The purpose of this study was to estimate the performance of a single-nucleotide polymorphism (SNP)-based noninvasive prenatal test for 5 microdeletion syndromes. STUDY DESIGN: Four hundred sixty-nine samples (358 plasma samples from pregnant women, 111 artificial plasma mixtures) were amplified with the use of a massively multiplexed polymerase chain reaction, sequenced, and analyzed with the use of the Next-generation Aneuploidy Test Using SNPs algorithm for the presence or absence of deletions of 22q11.2, 1p36, distal 5p, and the Prader-Willi/Angelman region. RESULTS: Detection rates were 97.8% for a 22q11.2 deletion (45/46) and 100% for Prader-Willi (15/15), Angelman (21/21), 1p36 deletion (1/1), and cri-du-chat syndromes (24/24). False-positive rates were 0.76% for 22q11.2 deletion syndrome (3/397) and 0.24% for cri-du-chat syndrome (1/419). No false positives occurred for Prader-Willi (0/428), Angelman (0/442), or 1p36 deletion syndromes (0/422). CONCLUSION: SNP-based noninvasive prenatal microdeletion screening is highly accurate. Because clinically relevant microdeletions and duplications occur in >1% of pregnancies, regardless of maternal age, noninvasive screening for the general pregnant population should be considered.


Assuntos
Deleção Cromossômica , Transtornos Cromossômicos/diagnóstico , Testes Genéticos/métodos , Testes para Triagem do Soro Materno , Polimorfismo de Nucleotídeo Único , Algoritmos , Transtornos Cromossômicos/genética , Reações Falso-Positivas , Feminino , Humanos , Reação em Cadeia da Polimerase Multiplex , Valor Preditivo dos Testes , Gravidez , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Síndrome
4.
PLoS Comput Biol ; 5(5): e1000386, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19461883

RESUMO

The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads (25-70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even in the presence of a large amount of polymorphism. Our method is based upon a fast read mapping technique, separate thorough alignment methods for regular letter-space as well as AB SOLiD (color-space) reads, and a statistical model for false positive hits. We use SHRiMP to map reads from a newly sequenced Ciona savignyi individual to the reference genome. We demonstrate that SHRiMP can accurately map reads to this highly polymorphic genome, while confirming high heterozygosity of C. savignyi in this second individual. SHRiMP is freely available at http://compbio.cs.toronto.edu/shrimp.


Assuntos
Mapeamento Cromossômico/métodos , Alinhamento de Sequência/métodos , Análise de Sequência de DNA/métodos , Software , Algoritmos , Animais , Simulação por Computador , Modelos Estatísticos , Reprodutibilidade dos Testes , Urocordados/genética
5.
Obstet Gynecol ; 124(2 Pt 1): 210-218, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25004354

RESUMO

OBJECTIVE: To estimate performance of a single-nucleotide polymorphism-based noninvasive prenatal screen for fetal aneuploidy in high-risk and low-risk populations on single venopuncture. METHODS: One thousand sixty-four maternal blood samples from 7 weeks of gestation and beyond were included; 1,051 were within specifications and 518 (49.3%) were low risk. Cell-free DNA was amplified, sequenced, and analyzed using the Next-generation Aneuploidy Test Using SNPs algorithm. Samples were called as trisomies 21, 18, 13, or monosomy X, or euploid, and male or female. RESULTS: Nine hundred sixty-six samples (91.9%) successfully generated a cell-free DNA result. Among these, sensitivity was 100% for trisomy 21 (58/58, confidence interval [CI] 93.8-100%), trisomy 13 (12/12, CI 73.5-100%), and fetal sex (358/358 female, CI 99.0-100%; 418/418 male, CI 99.1-100%), 96.0% for trisomy 18 (24/25, CI 79.7-99.9%), and 90% for monosomy X (9/10, CI 55.5-99.8%). Specificity for trisomies 21 and 13 was 100% (905/905, CI 99.6-100%; and 953/953, CI 99.6-100%, respectively) and for trisomy 18 and monosomy X was 99.9% (938/939, CI 99.4-100%; and 953/954, CI 99.4-100%, respectively). However, 16% (20/125) of aneuploid samples did not return a result; 50% (10/20) had a fetal fraction below the 1.5th percentile of euploid pregnancies. Aneuploidy rate was significantly higher in these samples (P<.001, odds ratio 9.2, CI 4.4-19.0). Sensitivity and specificity did not differ in low-risk and high-risk populations. CONCLUSIONS: This noninvasive prenatal screen performed with high sensitivity and specificity in high-risk and low-risk cohorts. Aneuploid samples were significantly more likely to not return a result; the number of aneuploidy samples was especially increased among samples with low fetal fraction. This underscores the importance of redraws or, in rare cases, invasive procedures based on low fetal fraction. LEVEL OF EVIDENCE: II.


Assuntos
Aneuploidia , Transtornos Cromossômicos/diagnóstico , DNA/sangue , Síndrome de Down/diagnóstico , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal/métodos , Trissomia/diagnóstico , Síndrome de Turner/diagnóstico , Adolescente , Adulto , Algoritmos , Sistema Livre de Células , Cromossomos Humanos Par 13 , Cromossomos Humanos Par 18 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Gravidez , Fatores de Risco , Sensibilidade e Especificidade , Síndrome da Trissomia do Cromossomo 13 , Síndrome da Trissomía do Cromossomo 18 , Adulto Jovem
6.
PLoS One ; 5(1): e8768, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20098735

RESUMO

Gene expression microarrays are the most widely used technique for genome-wide expression profiling. However, microarrays do not perform well on formalin fixed paraffin embedded tissue (FFPET). Consequently, microarrays cannot be effectively utilized to perform gene expression profiling on the vast majority of archival tumor samples. To address this limitation of gene expression microarrays, we designed a novel procedure (3'-end sequencing for expression quantification (3SEQ)) for gene expression profiling from FFPET using next-generation sequencing. We performed gene expression profiling by 3SEQ and microarray on both frozen tissue and FFPET from two soft tissue tumors (desmoid type fibromatosis (DTF) and solitary fibrous tumor (SFT)) (total n = 23 samples, which were each profiled by at least one of the four platform-tissue preparation combinations). Analysis of 3SEQ data revealed many genes differentially expressed between the tumor types (FDR<0.01) on both the frozen tissue (approximately 9.6K genes) and FFPET (approximately 8.1K genes). Analysis of microarray data from frozen tissue revealed fewer differentially expressed genes (approximately 4.64K), and analysis of microarray data on FFPET revealed very few (69) differentially expressed genes. Functional gene set analysis of 3SEQ data from both frozen tissue and FFPET identified biological pathways known to be important in DTF and SFT pathogenesis and suggested several additional candidate oncogenic pathways in these tumors. These findings demonstrate that 3SEQ is an effective technique for gene expression profiling from archival tumor samples and may facilitate significant advances in translational cancer research.


Assuntos
Perfilação da Expressão Gênica , Neoplasias/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA