Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 154(3): 541-55, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871696

RESUMO

Acquired chromosomal instability and copy number alterations are hallmarks of cancer. Enzymes capable of promoting site-specific copy number changes have yet to be identified. Here, we demonstrate that H3K9/36me3 lysine demethylase KDM4A/JMJD2A overexpression leads to localized copy gain of 1q12, 1q21, and Xq13.1 without global chromosome instability. KDM4A-amplified tumors have increased copy gains for these same regions. 1q12h copy gain occurs within a single cell cycle, requires S phase, and is not stable but is regenerated each cell division. Sites with increased copy number are rereplicated and have increased KDM4A, MCM, and DNA polymerase occupancy. Suv39h1/KMT1A or HP1γ overexpression suppresses the copy gain, whereas H3K9/K36 methylation interference promotes gain. Our results demonstrate that overexpression of a chromatin modifier results in site-specific copy gains. This begins to establish how copy number changes could originate during tumorigenesis and demonstrates that transient overexpression of specific chromatin modulators could promote these events.


Assuntos
Replicação do DNA , Dosagem de Genes , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias/genética , Cromatina/metabolismo , Cromossomos Humanos Par 1 , Instabilidade Genômica , Células HEK293 , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/genética , Metilação , Neoplasias/metabolismo , Estrutura Terciária de Proteína , Fase S
2.
Genes Dev ; 29(10): 1018-31, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25995187

RESUMO

Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are not dependent on HIF1α or HIF2α; however, they are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Furthermore, this response is conserved at a syntenic region in zebrafish cells. Regions with site-specific copy gain are also enriched for amplifications in hypoxic primary tumors. These tumors exhibited amplification and overexpression of the drug resistance gene CKS1B, which we recapitulated in hypoxic breast cancer cells. Our results demonstrate that hypoxia provides a biological stimulus to create transient site-specific copy alterations that could result in heterogeneity within tumors and cell populations. These findings have major implications in our understanding of copy number heterogeneity and the emergence of drug resistance genes in cancer.


Assuntos
Hipóxia Celular/fisiologia , Variações do Número de Cópias de DNA/genética , Regulação da Expressão Gênica , Animais , Quinases relacionadas a CDC2 e CDC28/genética , Hipóxia Celular/genética , Linhagem Celular , Proliferação de Células , Células Cultivadas , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Peixe-Zebra
3.
Cancer Discov ; 13(11): 2432-2447, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623743

RESUMO

Phosphoinositide 3-kinase α (PIK3CA) is one of the most mutated genes across cancers, especially breast, gynecologic, and head and neck squamous cell carcinoma tumors. Mutations occur throughout the gene, but hotspot mutations in the helical and kinase domains predominate. The therapeutic benefit of isoform-selective PI3Kα inhibition was established with alpelisib, which displays equipotent activity against the wild-type and mutant enzyme. Inhibition of wild-type PI3Kα is associated with severe hyperglycemia and rash, which limits alpelisib use and suggests that selectively targeting mutant PI3Kα could reduce toxicity and improve efficacy. Here we describe STX-478, an allosteric PI3Kα inhibitor that selectively targets prevalent PI3Kα helical- and kinase-domain mutant tumors. STX-478 demonstrated robust efficacy in human tumor xenografts without causing the metabolic dysfunction observed with alpelisib. Combining STX-478 with fulvestrant and/or cyclin-dependent kinase 4/6 inhibitors was well tolerated and provided robust and durable tumor regression in ER+HER2- xenograft tumor models. SIGNIFICANCE: These preclinical data demonstrate that the mutant-selective, allosteric PI3Kα inhibitor STX-478 provides robust efficacy while avoiding the metabolic dysfunction associated with the nonselective inhibitor alpelisib. Our results support the ongoing clinical evaluation of STX-478 in PI3Kα-mutated cancers, which is expected to expand the therapeutic window and mitigate counterregulatory insulin release. See related commentary by Kearney and Vasan, p. 2313. This article is featured in Selected Articles from This Issue, p. 2293.


Assuntos
Neoplasias da Mama , Neoplasias , Humanos , Feminino , Xenoenxertos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Classe I de Fosfatidilinositol 3-Quinases/genética
4.
SLAS Discov ; 26(4): 547-559, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33780296

RESUMO

Recent advances in targeted protein degradation have enabled chemical hijacking of the ubiquitin-proteasome system to treat disease. The catalytic rate of cereblon (CRBN)-dependent bifunctional degradation activating compounds (BiDAC), which recruit CRBN to a chosen target protein, resulting in its ubiquitination and proteasomal degradation, is an important parameter to consider during the drug discovery process. In this work, an in vitro system was developed to measure the kinetics of BRD4 bromodomain 1 (BD1) ubiquitination by fitting an essential activator kinetic model to these data. The affinities between BiDACs, BD1, and CRBN in the binary complex, ternary complex, and full ubiquitination complex were characterized. Together, this work provides a new tool for understanding and optimizing the catalytic and thermodynamic properties of BiDACs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Bioensaio , Proteínas de Ciclo Celular/metabolismo , Oxindóis/farmacologia , Ftalimidas/farmacologia , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Células HeLa , Humanos , Cinética , Oxindóis/síntese química , Ftalimidas/síntese química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Ligação Proteica , Domínios Proteicos , Proteólise/efeitos dos fármacos , Termodinâmica , Fatores de Transcrição/química , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/efeitos dos fármacos
5.
Mutat Res ; 684(1-2): 1-10, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20004674

RESUMO

Nucleoside analogs are efficacious cancer chemotherapeutics due to their incorporation into tumor cell DNA. However, they exhibit vastly different antitumor efficacies, suggesting that incorporation produces divergent effects on DNA replication. Here we have evaluated the consequences of incorporation on DNA replication and its fidelity for three structurally related deoxyguanosine analogs: ganciclovir (GCV), currently in clinical trials in a suicide gene therapy approach for cancer, D-carbocyclic 2'-deoxyguanosine (CdG) and penciclovir (PCV). GCV and CdG elicited similar cytotoxicity at low concentrations, whereas PCV was 10-100-fold less cytotoxic in human tumor cells. DNA replication fidelity was evaluated using a supF plasmid-based mutation assay. Only GCV induced a dose-dependent increase in mutation frequency, predominantly GC-->TA transversions, which contributed to cytotoxicity and implicated the ether oxygen in mutagenicity. Activation of mismatch repair with hydroxyurea decreased mutations but failed to repair the GC-->TA transversions. GCV slowed S-phase progression and CdG also induced a G2/M block, but both drugs allowed completion of one cell cycle after drug treatment followed by cell death in the second cell cycle. In contrast, PCV induced a lengthy early S-phase block due to profound suppression of DNA synthesis, with cell death in the first cell cycle after drug treatment. These data suggest that GCV and CdG elicit superior cytotoxicity due to their effects in template DNA, whereas strong inhibition of nascent strand synthesis by PCV may protect against cytotoxicity. Nucleoside analogs based on the carbohydrate structures of GCV and CdG is a promising area for antitumor drug development.


Assuntos
Antineoplásicos/farmacologia , Carboidratos/química , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Ganciclovir/farmacologia , Aciclovir/análogos & derivados , Aciclovir/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Reparo de Erro de Pareamento de DNA , Desoxiguanosina/agonistas , Desoxiguanosina/farmacologia , Genes Transgênicos Suicidas , Guanina , Células HCT116 , Humanos , Dados de Sequência Molecular , Mutação
6.
Oncotarget ; 7(36): 57651-57670, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27472392

RESUMO

Lung cancer is the most common cause of cancer death globally with a significant, unmet need for more efficacious treatments. The receptor tyrosine kinase MET has been implicated as an oncogene in numerous cancer subtypes, including non-small cell lung cancer (NSCLC). Here we explore the therapeutic potential of savolitinib (volitinib, AZD6094, HMPL-504), a potent and selective MET inhibitor, in NSCLC. In vitro, savolitinib inhibits MET phosphorylation with nanomolar potency, which correlates with blockade of PI3K/AKT and MAPK signaling as well as MYC down-regulation. In vivo, savolitinib causes inhibition of these pathways and significantly decreases growth of MET-dependent xenografts. To understand resistance mechanisms, we generated savolitinib resistance in MET-amplified NSCLC cell lines and analyzed individual clones. We found that upregulation of MYC and constitutive mTOR pathway activation is a conserved feature of resistant clones that can be overcome by knockdown of MYC or dual mTORC1/2 inhibition. Lastly, we demonstrate that mechanisms of resistance are heterogeneous, arising via a switch to EGFR dependence or by a requirement for PIM signaling. This work demonstrates the efficacy of savolitinib in NSCLC and characterizes acquired resistance, identifying both known and novel mechanisms that may inform combination strategies in the clinic.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazinas/química , Serina-Treonina Quinases TOR/metabolismo , Triazinas/química , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação para Baixo , Receptores ErbB/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-met/metabolismo
7.
Oncotarget ; 7(34): 54120-54136, 2016 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-27472462

RESUMO

Although endocrine therapy is successfully used to treat patients with estrogen receptor (ER) positive breast cancer, a substantial proportion of this population will relapse. Several mechanisms of acquired resistance have been described including activation of the mTOR pathway, increased activity of CDK4 and activating mutations in ER. Using a patient derived xenograft model harboring a common activating ER ligand binding domain mutation (D538G), we evaluated several combinatorial strategies using the selective estrogen receptor degrader (SERD) fulvestrant in combination with chromatin modifying agents, and CDK4/6 and mTOR inhibitors. In this model, fulvestrant binds WT and MT ER, reduces ER protein levels, and downregulated ER target gene expression. Addition of JQ1 or vorinostat to fulvestrant resulted in tumor regression (41% and 22% regression, respectively) though no efficacy was seen when either agent was given alone. Interestingly, although the CDK4/6 inhibitor palbociclib and mTOR inhibitor everolimus were efficacious as monotherapies, long-term delayed tumor growth was only observed when co-administered with fulvestrant. This observation was consistent with a greater inhibition of compensatory signaling when palbociclib and everolimus were co-dosed with fulvestrant. The addition of fulvestrant to JQ1, vorinostat, everolimus and palbociclib also significantly reduced lung metastatic burden as compared to monotherapy. The combination potential of fulvestrant with palbociclib or everolimus were confirmed in an MCF7 CRISPR model harboring the Y537S ER activating mutation. Taken together, these data suggest that fulvestrant may have an important role in the treatment of ER positive breast cancer with acquired ER mutations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Mutação , Receptores de Estrogênio/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Everolimo/administração & dosagem , Feminino , Fulvestranto , Humanos , Células MCF-7 , Camundongos , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Receptores de Estrogênio/análise , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Res ; 76(11): 3307-18, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020862

RESUMO

Fulvestrant is an estrogen receptor (ER) antagonist administered to breast cancer patients by monthly intramuscular injection. Given its present limitations of dosing and route of administration, a more flexible orally available compound has been sought to pursue the potential benefits of this drug in patients with advanced metastatic disease. Here we report the identification and characterization of AZD9496, a nonsteroidal small-molecule inhibitor of ERα, which is a potent and selective antagonist and downregulator of ERα in vitro and in vivo in ER-positive models of breast cancer. Significant tumor growth inhibition was observed as low as 0.5 mg/kg dose in the estrogen-dependent MCF-7 xenograft model, where this effect was accompanied by a dose-dependent decrease in PR protein levels, demonstrating potent antagonist activity. Combining AZD9496 with PI3K pathway and CDK4/6 inhibitors led to further growth-inhibitory effects compared with monotherapy alone. Tumor regressions were also seen in a long-term estrogen-deprived breast model, where significant downregulation of ERα protein was observed. AZD9496 bound and downregulated clinically relevant ESR1 mutants in vitro and inhibited tumor growth in an ESR1-mutant patient-derived xenograft model that included a D538G mutation. Collectively, the pharmacologic evidence showed that AZD9496 is an oral, nonsteroidal, selective estrogen receptor antagonist and downregulator in ER(+) breast cells that could provide meaningful benefit to ER(+) breast cancer patients. AZD9496 is currently being evaluated in a phase I clinical trial. Cancer Res; 76(11); 3307-18. ©2016 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cinamatos/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Indóis/farmacologia , Mutação/genética , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cinamatos/administração & dosagem , Avaliação Pré-Clínica de Medicamentos , Moduladores de Receptor Estrogênico/administração & dosagem , Receptor alfa de Estrogênio/química , Feminino , Humanos , Indóis/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Conformação Proteica , Ratos , Células Tumorais Cultivadas , Útero/metabolismo , Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Oncotarget ; 6(4): 2407-20, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25537515

RESUMO

Acquired resistance to PI3K/mTOR/Akt pathway inhibitors is often associated with compensatory feedback loops involving the activation of oncogenes. Here, we have generated everolimus resistance in ER+ breast cancer cells and in long-term estrogen deprived (LTED) models that mimic progression on anti-estrogens. This allowed us to uncover MYC as a driver of mTOR inhibitor resistance. We demonstrate that both everolimus resistance and acute treatment of everolimus can lead to the upregulation of MYC mRNA, protein expression and, consequently, the enrichment of MYC signatures as revealed by RNA sequencing data. Depletion of MYC resulted in resensitization to everolimus, confirming its functional importance in this setting. Furthermore, ChIP assays demonstrate that MYC upregulation in the everolimus resistant lines is mediated by increased association of the BRD4 transcription factor with the MYC gene. Finally, JQ1, a BRD4 inhibitor combined with everolimus exhibited increased tumor growth inhibition in 3D Matrigel models and an in vivo xenograft model. These data suggest that MYC plays an important role in mediating resistance to everolimus in ER+ and ER+/LTED models. Furthermore, given the regulation ofMYCby BRD4 in this setting, these data have implications for increased therapeutic potential of combining epigenetic agents with mTOR inhibitors to effectively downregulate otherwise difficult to target transcription factors such as MYC.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Everolimo/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Células MCF-7 , Camundongos Nus , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triazóis/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Discov ; 5(3): 245-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25564517

RESUMO

UNLABELLED: SNPs occur within chromatin-modulating factors; however, little is known about how these variants within the coding sequence affect cancer progression or treatment. Therefore, there is a need to establish their biochemical and/or molecular contribution, their use in subclassifying patients, and their impact on therapeutic response. In this report, we demonstrate that coding SNP-A482 within the lysine tridemethylase gene KDM4A/JMJD2A has different allelic frequencies across ethnic populations, associates with differential outcome in patients with non-small cell lung cancer (NSCLC), and promotes KDM4A protein turnover. Using an unbiased drug screen against 87 preclinical and clinical compounds, we demonstrate that homozygous SNP-A482 cells have increased mTOR inhibitor sensitivity. mTOR inhibitors significantly reduce SNP-A482 protein levels, which parallels the increased drug sensitivity observed with KDM4A depletion. Our data emphasize the importance of using variant status as candidate biomarkers and highlight the importance of studying SNPs in chromatin modifiers to achieve better targeted therapy. SIGNIFICANCE: This report documents the first coding SNP within a lysine demethylase that associates with worse outcome in patients with NSCLC. We demonstrate that this coding SNP alters the protein turnover and associates with increased mTOR inhibitor sensitivity, which identifies a candidate biomarker for mTOR inhibitor therapy and a therapeutic target for combination therapy.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Histona Desmetilases com o Domínio Jumonji/genética , Lisina/genética , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Alelos , Linhagem Celular , Linhagem Celular Tumoral , Análise Mutacional de DNA , Frequência do Gene , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/mortalidade , Prognóstico , Ubiquitinação
11.
Mol Cancer Ther ; 14(11): 2441-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351323

RESUMO

AKT1(E17K) mutations occur at low frequency in a variety of solid tumors, including those of the breast and urinary bladder. Although this mutation has been shown to transform rodent cells in culture, it was found to be less oncogenic than PIK3CA mutations in breast epithelial cells. Moreover, the therapeutic potential of AKT inhibitors in human tumors with an endogenous AKT1(E17K) mutation is not known. Expression of exogenous copies of AKT1(E17K) in MCF10A breast epithelial cells increased phosphorylation of AKT and its substrates, induced colony formation in soft agar, and formation of lesions in the mammary fat pad of immunodeficient mice. These effects were inhibited by the allosteric and catalytic AKT inhibitors MK-2206 and AZD5363, respectively. Both AKT inhibitors caused highly significant growth inhibition of breast cancer explant models with AKT1(E17K) mutation. Furthermore, in a phase I clinical study, the catalytic Akt inhibitor AZD5363 induced partial responses in patients with breast and ovarian cancer with tumors containing AKT1(E17K) mutations. In MGH-U3 bladder cancer xenografts, which contain both AKT1(E17K) and FGFR3(Y373C) mutations, AZD5363 monotherapy did not significantly reduce tumor growth, but tumor regression was observed in combination with the FGFR inhibitor AZD4547. The data show that tumors with AKT1(E17K) mutations are rational therapeutic targets for AKT inhibitors, although combinations with other targeted agents may be required where activating oncogenic mutations of other proteins are present in the same tumor.


Assuntos
Mutação de Sentido Incorreto , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Doxiciclina/farmacologia , Feminino , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Masculino , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/administração & dosagem , Pirróis/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
DNA Repair (Amst) ; 12(12): 1114-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24231389

RESUMO

The nucleoside analog ganciclovir (GCV) elicits cytotoxicity in tumor cells via a novel mechanism in which drug incorporation into DNA produces minimal disruption of replication, but numerous DNA double strand breaks occur during the second S-phase after drug exposure. We propose that homologous recombination (HR), a major repair pathway for DNA double strand breaks, can prevent GCV-induced DNA damage, and that inhibition of HR will enhance cytotoxicity with GCV. Survival after GCV treatment in cells expressing a herpes simplex virus thymidine kinase was strongly dependent on HR (>14-fold decrease in IC50 in HR-deficient vs. HR-proficient CHO cells). In a homologous recombination reporter assay, the histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA; vorinostat), decreased HR repair events up to 85%. SAHA plus GCV produced synergistic cytotoxicity in U251tk human glioblastoma cells. Elucidation of the synergistic mechanism demonstrated that SAHA produced a concentration-dependent decrease in the HR proteins Rad51 and CtIP. GCV alone produced numerous Rad51 foci, demonstrating activation of HR. However, the addition of SAHA blocked GCV-induced Rad51 foci formation completely and increased γH2AX, a marker of DNA double strand breaks. SAHA plus GCV also produced synergistic cytotoxicity in HR-proficient CHO cells, but the combination was antagonistic or additive in HR-deficient CHO cells. Collectively, these data demonstrate that HR promotes survival with GCV and compromise of HR by SAHA results in synergistic cytotoxicity, revealing a new mechanism for enhancing anticancer activity with GCV.


Assuntos
Antineoplásicos/farmacologia , Ganciclovir/farmacologia , Recombinação Homóloga/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células CHO , Proteínas de Transporte/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Endodesoxirribonucleases , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Vorinostat
13.
Mol Cell ; 18(4): 483-90, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15893731

RESUMO

Class I histone deacetylases (HDACs) repress transcription by deacetylating histones and have been shown to play crucial roles in mouse, Xenopus, zebrafish, and C. elegans development. To identify the molecular networks regulated by a class I HDAC in a multicellular organism, we carried out a global gene expression profiling study using C. elegans embryos, and identified tissue-specific and extracellular matrix (ECM)-related genes as major HDA-1 targets. Ectopic expression of HDA-1 or C. elegans cystatin, an HDA-1 target identified from the microarray, significantly perturbed mammalian cell invasion. Similarly, RNAi depletion or overexpression of human HDAC-1 also affected cell migration. These findings suggest that HDA-1/HDAC-1 may play a critical, evolutionarily conserved role in regulating the extracellular microenvironment. Because human HDACs are targets for cancer therapy, these findings have significant implications in cancer treatment.


Assuntos
Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histona Desacetilases/fisiologia , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Movimento Celular/fisiologia , Matriz Extracelular/genética , Histona Desacetilases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA