Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38956870

RESUMO

Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using High-Throughput Microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as Monkeypox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.

2.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36430472

RESUMO

Neuropathic pain is a prevalent and severe chronic syndrome, often refractory to treatment, whose development and maintenance may involve epigenetic mechanisms. We previously demonstrated a causal relationship between miR-30c-5p upregulation in nociception-related neural structures and neuropathic pain in rats subjected to sciatic nerve injury. Furthermore, a short course of an miR-30c-5p inhibitor administered into the cisterna magna exerts long-lasting antiallodynic effects via a TGF-ß1-mediated mechanism. Herein, we show that miR-30c-5p inhibition leads to global DNA hyper-methylation of neurons in the lumbar dorsal root ganglia and spinal dorsal horn in rats subjected to sciatic nerve injury. Specifically, the inhibition of miR-30-5p significantly increased the expression of the novo DNA methyltransferases DNMT3a and DNMT3b in those structures. Furthermore, we identified the mechanism and found that miR-30c-5p targets the mRNAs of DNMT3a and DNMT3b. Quantitative methylation analysis revealed that the promoter region of the antiallodynic cytokine TGF-ß1 was hypomethylated in the spinal dorsal horn of nerve-injured rats treated with the miR-30c-5p inhibitor, while the promoter of Nfyc, the host gene of miR-30c-5p, was hypermethylated. These results are consistent with long-term protection against neuropathic pain development after nerve injury. Altogether, our results highlight the key role of miR-30c-5p in the epigenetic mechanisms' underlying neuropathic pain and provide the basis for miR-30c-5p as a therapeutic target.


Assuntos
MicroRNAs , Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Neuralgia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/genética , Metilases de Modificação do DNA/genética , Epigênese Genética , DNA
3.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514010

RESUMO

Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed that the additional gene dose in trisomic cells induces modifications in nuclear compartments and on the chromatin landscape, which could contribute to some DS phenotypes. The Ts65Dn (TS) mouse model of DS carries a triplication of 92 genes orthologous to those found in Hsa21, and shares many phenotypes with DS individuals, including cognitive and neuromorphological alterations. Considering its essential role in hippocampal memory formation, we investigated whether the triplication of this set of Hsa21 orthologous genes in TS mice modifies the nuclear architecture of their GCs. Our results show that the TS mouse presents alterations in the nuclear architecture of its GCs, affecting nuclear compartments involved in transcription and pre-rRNA and pre-mRNA processing. In particular, the GCs of the TS mouse show alterations in the nucleolar fusion pattern and the molecular assembly of Cajal bodies (CBs). Furthermore, hippocampal GCs of TS mice present an epigenetic dysregulation of chromatin that results in an increased heterochromatinization and reduced global transcriptional activity. These nuclear alterations could play an important role in the neuromorphological and/or functional alterations of the hippocampal GCs implicated in the cognitive dysfunction characteristic of TS mice.


Assuntos
Cromatina/genética , Síndrome de Down/genética , Hipocampo/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Cognição/fisiologia , Corpos Enovelados/genética , Corpos Enovelados/metabolismo , Modelos Animais de Doenças , Síndrome de Down/patologia , Hipocampo/patologia , Humanos , Memória/fisiologia , Camundongos , Camundongos Transgênicos , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/patologia
4.
Carcinogenesis ; 41(2): 203-213, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31095674

RESUMO

Pancreatic adenocarcinoma upregulated factor (PAUF), also known as ZG16B, was previously found in the secretome of metastatic colorectal cancer cells. Here, we demonstrated the presence of PAUF at the intracellular level and its multiple effects on cancer progression. An initial decline of PAUF expression was observed at early stages of colorectal cancer followed by an increase at the metastatic site. PAUF was located at different cellular compartments: membrane-associated vesicles, endosomes, microtubule-associated vesicles, cell growth cones and the cell nucleus. PAUF loss in two colorectal cancer cell lines caused severe alterations in the cell phenotype and cell cycle, including tetraploidy, extensive genomic alterations, micronuclei and increased apoptosis. An exhaustive analysis of the PAUF interactome using different proteomic approaches revealed the presence of multiple components of the cell cycle, mitotic checkpoint, Wnt pathway and intracellular transport. Among the interacting proteins we found ZW10, a moonlighting protein with a dual function in membrane trafficking and mitosis. In addition, PAUF silencing was associated to APC loss and increased ß-catenin nuclear expression. Altogether, our results suggest that PAUF depletion increases aneuploidy, promotes apoptosis and activates the Wnt/ß-catenin pathway in colorectal cancer cells facilitating cancer progression. In summary, PAUF behaves as a multifunctional protein, with different roles in cancer progression according to the extra- or intracellular expression, suggesting a therapeutic value for colorectal cancer.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Colorretais/patologia , Lectinas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Aneuploidia , Linhagem Celular Tumoral , Colo/patologia , Neoplasias Colorretais/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lectinas/genética , Fígado/patologia , Neoplasias Hepáticas/secundário , Mapeamento de Interação de Proteínas , Proteômica , Reto/patologia , Regulação para Cima
5.
Mod Pathol ; 33(11): 2139-2146, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32620916

RESUMO

The spectrum of COVID-19 infection includes acute respiratory distress syndrome (ARDS) and macrophage activation syndrome (MAS), although the histological basis for these disorders has not been thoroughly explored. Post-mortem pulmonary and bone marrow biopsies were performed in 33 patients. Samples were studied with a combination of morphological and immunohistochemical techniques. Bone marrow studies were also performed in three living patients. Bone marrow post-mortem studies showed striking lesions of histiocytic hyperplasia with hemophagocytosis (HHH) in most (16/17) cases. This was also observed in three alive patients, where it mimicked the changes observed in hemophagocytic histiocytosis. Pulmonary changes included a combination of diffuse alveolar damage with fibrinous microthrombi predominantly involving small vessels, in particular the alveolar capillary. These findings were associated with the analytical and clinical symptoms, which helps us understand the respiratory insufficiency and reveal the histological substrate for the macrophage activation syndrome-like exhibited by these patients. Our results confirm that COVID-19 infection triggers a systemic immune-inflammatory disease and allow specific therapies to be proposed.


Assuntos
Infecções por Coronavirus/patologia , Histiócitos/patologia , Linfo-Histiocitose Hemofagocítica/patologia , Linfo-Histiocitose Hemofagocítica/virologia , Pneumonia Viral/patologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , Medula Óssea/patologia , COVID-19 , Feminino , Humanos , Hiperplasia/patologia , Hiperplasia/virologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
6.
Cell Tissue Res ; 381(3): 461-478, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32676861

RESUMO

Spinal muscular atrophy (SMA) is caused by a deletion or mutation of the survival motor neuron 1 (SMN1) gene. Reduced SMN levels lead to motor neuron degeneration and muscular atrophy. SMN protein localizes to the cytoplasm and Cajal bodies. Moreover, in myofibrils from Drosophila and mice, SMN is a sarcomeric protein localized to the Z-disc. Although SMN participates in multiple functions, including the biogenesis of spliceosomal small nuclear ribonucleoproteins, its role in the sarcomere is unclear. Here, we analyzed the sarcomeric organization of SMN in human control and type I SMA skeletal myofibers. In control sarcomeres, we demonstrate that human SMN is localized to the titin-positive M-band and actin-positive I-band, and to SMN-positive granules that flanked the Z-discs. Co-immunoprecipitation assays revealed that SMN interacts with the sarcomeric protein actin, α-actinin, titin, and profilin2. In the type I SMA muscle, SMN levels were reduced, and atrophic (denervated) and hypertrophic (nondenervated) myofibers coexisted. The hypertrophied myofibers, which are potential primary targets of SMN deficiency, exhibited sites of focal or segmental alterations of the actin cytoskeleton, where the SMN immunostaining pattern was altered. Moreover, SMN was relocalized to the Z-disc in overcontracted minisarcomeres from hypertrophic myofibers. We propose that SMN could have an integrating role in the molecular components of the sarcomere. Consequently, low SMN levels might impact the normal sarcomeric architecture, resulting in the disruption of myofibrils found in SMA muscle. This primary effect might be independent of the neurogenic myopathy produced by denervation and contribute to pathophysiology of the SMA myopathy.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/metabolismo , Miofibrilas/metabolismo , Sarcômeros/metabolismo , Humanos
7.
Neurobiol Dis ; 127: 312-322, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30905767

RESUMO

The Purkinje cell (PC) degeneration (pcd) mouse harbors a mutation in Agtpbp1 gene that encodes for the cytosolic carboxypeptidase, CCP1. The mutation causes degeneration and death of PCs during the postnatal life, resulting in clinical and pathological manifestation of cerebellar ataxia. Monogenic biallelic damaging variants in the Agtpbp1 gene cause infantile-onset neurodegeneration and cerebellar atrophy, linking loss of functional CCP1 with human neurodegeneration. Although CCP1 plays a key role in the regulation of tubulin stabilization, its loss of function in PCs leads to a severe nuclear phenotype with heterochromatinization and accumulation of DNA damage. Therefore, the pcd mice provides a useful neuronal model to investigate nuclear mechanisms involved in neurodegeneration, particularly the nucleolar stress. In this study, we demonstrated that the Agtpbp1 gene mutation induces a p53-dependent nucleolar stress response in PCs, which is characterized by nucleolar fragmentation, nucleoplasmic and cytoplasmic mislocalization of nucleolin, and dysfunction of both pre-rRNA processing and mRNA translation. RT-qPCR analysis revealed reduction of mature 18S rRNA, with a parallel increase of its intermediate 18S-5'-ETS precursor, that correlates with a reduced expression of Fbl mRNA, which encodes an essential factor for rRNA processing. Moreover, nucleolar alterations were accompanied by a reduction of PTEN mRNA and protein levels, which appears to be related to the chromosome instability and accumulation of DNA damage in degenerating PCs. Our results highlight the essential contribution of nucleolar stress to PC degeneration and also underscore the nucleoplasmic mislocalization of nucleolin as a potential indicator of neurodegenerative processes.


Assuntos
Nucléolo Celular/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fosfoproteínas/metabolismo , Células de Purkinje/metabolismo , Proteínas de Ligação a RNA/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Animais , Proteínas de Ligação ao GTP/genética , Camundongos , Mutação , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Nucleolina
8.
Histochem Cell Biol ; 152(3): 227-237, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31183542

RESUMO

Type I spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by the loss or mutation of the survival motor neuron 1 (SMN1) gene. The reduction in SMN protein levels in SMA leads to the degeneration of motor neurons and muscular atrophy. In this study, we analyzed the nuclear reorganization in human skeletal myofibers from a type I SMA patient carrying a deletion of exons 7 and 8 in the SMN1 gene and two SMN2 gene copies and showing reduced SMN protein levels in the muscle compared with those in control samples. The morphometric analysis of myofiber size revealed the coexistence of atrophic and hypertrophic myofibers in SMA samples. Compared with controls, both nuclear size and the nuclear shape factor were significantly reduced in SMA myonuclei. Nuclear reorganization in SMA myonuclei was characterized by extensive heterochromatinization, the aggregation of splicing factors in large interchromatin granule clusters, and nucleolar alterations with the accumulation of the granular component and a loss of fibrillar center/dense fibrillar component units. These nuclear alterations reflect a severe perturbation of global pre-mRNA transcription and splicing, as well as nucleolar dysfunction, in SMA myofibers. Moreover, the finding of similar nuclear reorganization in both atrophic and hypetrophic myofibers provides additional support that the SMN deficiency in SMA patients may primarily affect the skeletal myofibers.


Assuntos
Núcleo Celular/genética , Músculo Esquelético/patologia , RNA/genética , RNA/metabolismo , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/patologia , Núcleo Celular/metabolismo , Humanos , Recém-Nascido , Masculino , Músculo Esquelético/metabolismo
9.
Cell Mol Life Sci ; 75(3): 527-546, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28879433

RESUMO

The survival of motor neuron (SMN) protein plays an essential role in the biogenesis of spliceosomal snRNPs and the molecular assembly of Cajal bodies (CBs). Deletion of or mutations in the SMN1 gene cause spinal muscular atrophy (SMA) with degeneration and loss of motor neurons. Reduced SMN levels in SMA lead to deficient snRNP biogenesis with consequent splicing pathology. Here, we demonstrate that SMN is a novel and specific target of the acetyltransferase CBP (CREB-binding protein). Furthermore, we identify lysine (K) 119 as the main acetylation site in SMN. Importantly, SMN acetylation enhances its cytoplasmic localization, causes depletion of CBs, and reduces the accumulation of snRNPs in nuclear speckles. In contrast, the acetylation-deficient SMNK119R mutant promotes formation of CBs and a novel category of promyelocytic leukemia (PML) bodies enriched in this protein. Acetylation increases the half-life of SMN protein, reduces its cytoplasmic diffusion rate and modifies its interactome. Hence, SMN acetylation leads to its dysfunction, which explains the ineffectiveness of HDAC (histone deacetylases) inhibitors in SMA therapy despite their potential to increase SMN levels.


Assuntos
Corpos Enovelados/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Citoplasma/metabolismo , Proteínas do Complexo SMN/metabolismo , Acetilação , Células Cultivadas , Células HEK293 , Humanos , Células MCF-7 , Processamento de Proteína Pós-Traducional , Transporte Proteico
10.
Neurobiol Dis ; 110: 206-217, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29221819

RESUMO

Down syndrome (DS) is characterized by a marked reduction in the size of the brain and cerebellum. These changes play an important role in the motor alterations and cognitive disabilities observed in this condition. The Ts65Dn (TS) mouse, the most commonly used model of DS, reflects many DS phenotypes, including alterations in cerebellar morphology. One of the genes that is overexpressed in both individuals with DS and TS mice is DYRK1A/Dyrk1A (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), which has been implicated in the altered cerebellar structural and functional phenotypes observed in both populations. The aim of this study was to evaluate the effect of Dyrk1A on different alterations observed in the cerebellum of TS animals. TS mice were crossed with Dyrk1A +/- KO mice to obtain mice with a triplicate segment of Mmu16 that included Dyrk1A (TS +/+/+), mice with triplicate copies of the same genes that carried only two copies of Dyrk1A (TS +/+/-), euploid mice that expressed a normal dose of Dyrk1A (CO +/+) and CO animals with a single copy of Dyrk1A (CO +/-). Male mice were used for all experiments. The normalization of the Dyrk1A gene dosage did not rescue the reduced cerebellar volume. However, it increased the size of the granular and molecular layers, the densities of granular and Purkinje cells, and dendritic arborization. Furthermore, it improved the excitatory/inhibitory balance and walking pattern of TS +/+/- mice. These results support the hypothesis that Dyrk1A is involved in some of the structural and functional cerebellar phenotypes observed in the TS mouse model.


Assuntos
Cerebelo/patologia , Síndrome de Down/genética , Síndrome de Down/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Quinases Dyrk
11.
Neurobiol Dis ; 108: 83-99, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28823932

RESUMO

Spinal muscular atrophy (SMA) is caused by a homozygous deletion or mutation in the survival motor neuron 1 (SMN1) gene that leads to reduced levels of SMN protein resulting in degeneration of motor neurons (MNs). The best known functions of SMN is the biogenesis of spliceosomal snRNPs. Linked to this function, Cajal bodies (CBs) are involved in the assembly of spliceosomal (snRNPs) and nucleolar (snoRNPs) ribonucleoproteins required for pre-mRNA and pre-rRNA processing. Recent studies support that the interaction between CBs and nucleoli, which are especially prominent in neurons, is essential for the nucleolar rRNA homeostasis. We use the SMN∆7 murine model of type I SMA to investigate the cellular basis of the dysfunction of RNA metabolism in MNs. SMN deficiency in postnatal MNs produces a depletion of functional CBs and relocalization of coilin, which is a scaffold protein of CBs, in snRNP-free perinucleolar caps or within the nucleolus. Disruption of CBs is the earliest nuclear sign of MN degeneration. We demonstrate that depletion of CBs, with loss of CB-nucleolus interactions, induces a progressive nucleolar dysfunction in ribosome biogenesis. It includes reorganization and loss of nucleolar transcription units, segregation of dense fibrillar and granular components, retention of SUMO-conjugated proteins in intranucleolar bodies and a reactive, compensatory, up-regulation of mature 18S rRNA and genes encoding key nucleolar proteins, such as upstream binding factor, fibrillarin, nucleolin and nucleophosmin. We propose that CB depletion and nucleolar alterations are essential components of the dysfunction of RNA metabolism in SMA.


Assuntos
Nucléolo Celular/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/metabolismo , RNA/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Nucléolo Celular/patologia , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Camundongos Transgênicos , Microscopia Confocal , Microscopia Eletrônica , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
12.
J Bone Miner Metab ; 35(2): 150-160, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27038990

RESUMO

Different model systems using osteoblastic cell lines have been developed to help understand the process of bone formation. Here, we report the establishment of two human osteoblastic cell lines obtained from primary cultures upon transduction of immortalizing genes. The resulting cell lines had no major differences to their parental lines in their gene expression profiles. Similar to primary osteoblastic cells, osteocalcin transcription increased following 1,25-dihydroxyvitamin D3 treatment and the immortalized cells formed a mineralized matrix, as detected by Alizarin Red staining. Moreover, these human cell lines responded by upregulating ALPL gene expression after treatment with the demethylating agent 5-aza-2'-deoxycytidine (AzadC), as shown before for primary osteoblasts. We further demonstrate that these cell lines can differentiate in vivo, using a hydroxyapatite/tricalcium phosphate composite as a scaffold, to produce bone matrix. More importantly, we show that these cells respond to demethylating treatment, as shown by the increase in SOST mRNA levels, the gene encoding sclerostin, upon treatment of the recipient mice with AzadC. This also confirms, in vivo, the role of DNA methylation in the regulation of SOST expression previously shown in vitro. Altogether our results show that these immortalized cell lines constitute a particularly useful model system to obtain further insight into bone homeostasis, and particularly into the epigenetic mechanisms regulating sclerostin production.


Assuntos
Linhagem Celular , Epigênese Genética , Osteoblastos/citologia , Osteogênese , Proteínas Adaptadoras de Transdução de Sinal , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica , Calcitriol/farmacologia , Diferenciação Celular , Metilação de DNA , Decitabina , Marcadores Genéticos/genética , Humanos , Camundongos , Camundongos Nus , Osteocalcina/genética , Osteocalcina/metabolismo , Alicerces Teciduais
13.
RNA Biol ; 14(6): 712-725, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27627892

RESUMO

Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.


Assuntos
Corpos Enovelados/metabolismo , Neurônios/metabolismo , Animais , Nucléolo Celular/metabolismo , Suscetibilidade a Doenças , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transporte Proteico , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo
14.
J Biol Chem ; 290(44): 26533-48, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26364852

RESUMO

Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Cistatinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cistatinas/genética , Citocinas/biossíntese , Citocinas/genética , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Proteínas de Neoplasias/genética , Proteômica
15.
J Cell Sci ; 127(Pt 5): 939-46, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413165

RESUMO

Cajal bodies (CBs) are nuclear organelles involved in the maturation of spliceosomal small nuclear ribonucleoproteins (snRNPs). They concentrate coilin, snRNPs and the survival motor neuron protein (SMN). Dysfunction of CB assembly occurs in spinal muscular atrophy (SMA). Here, we demonstrate that SMN is a SUMO1 target that has a small ubiquitin-related modifier (SUMO)-interacting motif (SIM)-like motif in the Tudor domain. The expression of SIM-like mutant constructs abolishes the interaction of SMN with the spliceosomal SmD1 (also known as SNRPD1), severely decreases SMN-coilin interaction and prevents CB assembly. Accordingly, the SMN SIM-like-mediated interactions are important for CB biogenesis and their dysfunction can be involved in SMA pathophysiology.


Assuntos
Corpos Enovelados/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteínas Centrais de snRNP/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Proteína SUMO-1/metabolismo , Spliceossomos/metabolismo , Sumoilação
16.
Biochim Biophys Acta ; 1842(6): 848-59, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24269586

RESUMO

The dysfunction of the ubiquitin proteasome system has been related to a broad array of neurodegenerative disorders in which the accumulation of misfolded protein aggregates causes proteotoxicity. The ability of proteasome inhibitors to induce cell cycle arrest and apoptosis has emerged as a powerful strategy for cancer therapy. Bortezomib is a proteasome inhibitor used as an antineoplastic drug, although its neurotoxicity frequently causes a severe sensory peripheral neuropathy. In this study we used a rat model of bortezomib treatment to study the nucleolar and Cajal body responses to the proteasome inhibition in sensory ganglion neurons that are major targets of bortezomib-induced neurotoxicity. Treatment with bortezomib induced dose-dependent dissociation of protein synthesis machinery (chromatolysis) and nuclear retention of poly(A) RNA granules resulting in neuronal dysfunction. However, as a compensatory response to the proteotoxic stress, both nucleoli and Cajal bodies exhibited reactive changes. These include an increase in the number and size of nucleoli, strong nucleolar incorporation of the RNA precursor 5'-fluorouridine, and increased expression of both 45S rRNA and genes encoding nucleolar proteins UBF, fibrillarin and B23. Taken together, these findings appear to reflect the activation of the nucleolar transcription in response to proteotoxic stress Furthermore, the number of Cajal bodies, a parameter related to transcriptional activity, increases upon proteasome inhibition. We propose that nucleoli and Cajal bodies are important targets in the signaling pathways that are activated by the proteotoxic stress response to proteasome inhibition. The coordinating activity of these two organelles in the production of snRNA, snoRNA and rRNA may contribute to neuronal survival after proteasome inhibition. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.


Assuntos
Corpos Enovelados/metabolismo , Gânglios Sensitivos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Ácidos Borônicos/administração & dosagem , Bortezomib , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular , Citoplasma/metabolismo , Gânglios Sensitivos/crescimento & desenvolvimento , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Pirazinas/administração & dosagem , Ratos , Transdução de Sinais/efeitos dos fármacos
17.
Cell Mol Life Sci ; 71(10): 1961-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24061536

RESUMO

Bortezomib is a reversible proteasome inhibitor used as an anticancer drug. However, its clinical use is limited since it causes peripheral neurotoxicity. We have used Sprague-Dawley rats as an animal model to investigate the cellular mechanisms affected by both short-term and chronic bortezomib treatments in sensory ganglia neurons. Proteasome inhibition induces dose-dependent alterations in the architecture, positioning, shape and polarity of the neuronal nucleus. It also produces DNA damage without affecting neuronal survival, and severe disruption of the protein synthesis machinery at the central cytoplasm accompanied by decreased expression of the brain-derived neurotrophic factor. As a compensatory or adaptive survival response against proteotoxic stress caused by bortezomib treatment, sensory neurons preserve basal levels of transcriptional activity, up-regulate the expression of proteasome subunit genes, and generate a new cytoplasmic perinuclear domain for protein synthesis. We propose that proteasome activity is crucial for controlling nuclear architecture, DNA repair and the organization of the protein synthesis machinery in sensory neurons. These neurons are primary targets of bortezomib neurotoxicity, for which reason their dysfunction may contribute to the pathogenesis of the bortezomib-induced peripheral neuropathy in treated patients.


Assuntos
Núcleo Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Gânglios Sensitivos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Bortezomib , Núcleo Celular/fisiologia , Reparo do DNA/efeitos dos fármacos , Gânglios Sensitivos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Microscopia Confocal , Corpos de Nissl/efeitos dos fármacos , Corpos de Nissl/fisiologia , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Pirazinas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
18.
Stem Cells ; 31(6): 1075-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23401361

RESUMO

Glioblastoma (GBM) is associated with infiltration of peritumoral (PT) parenchyma by isolated tumor cells that leads to tumor regrowth. Recently, GBM stem-like or initiating cells (GICs) have been identified in the PT area, but whether these GICs have enhanced migratory and invasive capabilities compared with GICs from the tumor mass (TM) is presently unknown. We isolated GICs from the infiltrated PT tissue and the TM of three patients and found that PT cells have an advantage over TM cells in two-dimensional and three-dimensional migration and invasion assays. Interestingly, PT cells display a high plasticity in protrusion formation and cell shape and their migration is insensitive to substrate stiffness, which represent advantages to infiltrate microenvironments of different rigidity. Furthermore, mouse and chicken embryo xenografts revealed that only PT cells showed a dispersed distribution pattern, closely associated to blood vessels. Consistent with cellular plasticity, simultaneous Rac and RhoA activation are required for the enhanced invasive capacity of PT cells. Moreover, Rho GTPase signaling modulators αVß3 and p27 play key roles in GIC invasiveness. Of note, p27 is upregulated in TM cells and inhibits RhoA activity. Gene silencing of p27 increased the invasive capacity of TM GICs. Additionally, ß3 integrin is upregulated in PT cells. Blockade of dimeric integrin αVß3, a Rac activator, reduced the invasive capacity of PT GICs in vitro and abrogated the spreading of PT cells into chicken embryos. Thus, our results describe the invasive features acquired by a unique subpopulation of GICs that infiltrate neighboring tissue.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Embrião de Galinha , Regulação para Baixo , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Regulação para Cima , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Cell Death Dis ; 15(4): 301, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684650

RESUMO

Understanding the mechanisms involved in colonic epithelial differentiation is key to unraveling the alterations causing inflammatory conditions and cancer. Organoid cultures provide an unique tool to address these questions but studies are scarce. We report a differentiation system toward enterocytes and goblet cells, the two major colonic epithelial cell lineages, using colon organoids generated from healthy tissue of colorectal cancer patients. Culture of these organoids in medium lacking stemness agents resulted in a modest ultrastructural differentiation phenotype with low-level expression of enterocyte (KLF4, KRT20, CA1, FABP2) and goblet cell (TFF2, TFF3, AGR2) lineage markers. BMP pathway activation through depletion of Noggin and addition of BMP4 resulted in enterocyte-biased differentiation. Contrarily, blockade of the Notch pathway using the γ-secretase inhibitor dibenzazepine (DBZ) favored goblet cell differentiation. Combination treatment with BMP4 and DBZ caused a balanced strong induction of both lineages. In contrast, colon tumor organoids responded poorly to BMP4 showing only weak signals of cell differentiation, and were unresponsive to DBZ. We also investigated the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on differentiation. Calcitriol attenuated the effects of BMP4 and DBZ on colon normal organoids, with reduced expression of differentiation genes and phenotype. Consistently, in normal organoids, calcitriol inhibited early signaling by BMP4 as assessed by reduction of the level of phospho-SMAD1/5/8. Our results show that BMP and Notch signaling play key roles in human colon stem cell differentiation to the enterocytic and goblet cell lineages and that calcitriol modulates these processes favoring stemness features.


Assuntos
Proteína Morfogenética Óssea 4 , Calcitriol , Proteínas de Transporte , Diferenciação Celular , Colo , Dibenzazepinas , Células Caliciformes , Fator 4 Semelhante a Kruppel , Organoides , Receptores Notch , Transdução de Sinais , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/citologia , Colo/patologia , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Calcitriol/farmacologia , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Dibenzazepinas/farmacologia , Linhagem da Célula/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/citologia , Vitamina D/farmacologia
20.
Glia ; 61(2): 254-72, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23047288

RESUMO

Purkinje Cell Degeneration (PCD) mice harbor a nna1 gene mutation which leads to an early and rapid degeneration of Purkinje cells (PC) between the third and fourth week of age. This mutation also underlies the death of mitral cells (MC) in the olfactory bulb (OB), but this process is slower and longer than in PC. No clear interpretations supporting the marked differences in these neurodegenerative processes exist. Growing evidence suggests that either beneficial or detrimental effects of gliosis in damaged regions would underlie these divergences. Here, we examined the gliosis occurring during PC and MC death in the PCD mouse. Our results demonstrated different glial reactions in both affected regions. PC disappearance stimulated a severe gliosis characterized by strong morphological changes, enhanced glial proliferation, as well as the release of pro-inflammatory mediators. By contrast, MC degeneration seems to promote a more attenuated glial response in the PCD OB compared with that of the cerebellum. Strikingly, cerebellar oligodendrocytes died by apoptosis in the PCD, whereas bulbar ones were not affected. Interestingly, the level of nna1 mRNA under normal conditions was higher in the cerebellum than in the OB, probably related to a faster neurodegeneration and stronger glial reaction in its absence. The glial responses may thus influence the neurodegenerative course in the cerebellum and OB of the mutant mouse brain, providing harmful and beneficial microenvironments, respectively.


Assuntos
Proteínas de Ligação ao GTP/genética , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Neuroglia/fisiologia , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Bromodesoxiuridina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Morte Celular/genética , Proliferação de Células , Cerebelo/patologia , Proteínas de Ligação ao GTP/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/genética , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica de Transmissão , Proteínas do Tecido Nervoso/metabolismo , Bulbo Olfatório/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Células de Purkinje/ultraestrutura , RNA Mensageiro , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA