Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Neuroinflammation ; 19(1): 22, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093106

RESUMO

BACKGROUND: The pathogenic contribution of neuroinflammation to ictogenesis and epilepsy may provide a therapeutic target for reduction of seizure burden in patients that are currently underserved by traditional anti-seizure medications. The Theiler's murine encephalomyelitis virus (TMEV) model has provided important insights into the role of inflammation in ictogenesis, but questions remain regarding the relative contribution of microglia and inflammatory monocytes in this model. METHODS: Female C57BL/6 mice were inoculated by intracranial injection of 2 × 105, 5 × 104, 1.25 × 104, or 3.125 × 103 plaque-forming units (PFU) of the Daniel's strain of TMEV at 4-6 weeks of age. Infiltration of inflammatory monocytes, microglial activation, and cytokine production were measured at 24 h post-infection (hpi). Viral load, hippocampal injury, cognitive performance, and seizure burden were assessed at several timepoints. RESULTS: The intensity of inflammatory infiltration and the extent of hippocampal injury induced during TMEV encephalitis scaled with the amount of infectious virus in the initial inoculum. Cognitive performance was preserved in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV, but peak viral load at 72 hpi was equivalent between the inocula. CCL2 production in the brain was attenuated by 90% and TNFα and IL6 production was absent in mice inoculated with 1.25 × 104 PFU TMEV. Acute infiltration of inflammatory monocytes was attenuated by more than 80% in mice inoculated with 1.25 × 104 PFU TMEV relative to 2 × 105 PFU TMEV but microglial activation was equivalent between groups. Seizure burden was attenuated and the threshold to kainic acid-induced seizures was higher in mice inoculated with 1.25 × 104 PFU TMEV but low-level behavioral seizures persisted and the EEG exhibited reduced but detectable abnormalities. CONCLUSIONS: The size of the inflammatory monocyte response induced by TMEV scales with the amount of infectious virus in the initial inoculum, despite the development of equivalent peak infectious viral load. In contrast, the microglial response does not scale with the inoculum, as microglial hyper-ramification and increased Iba-1 expression were evident in mice inoculated with either 1.25 × 104 or 2 × 105 PFU TMEV. Inoculation conditions that drive inflammatory monocyte infiltration resulted in robust behavioral seizures and EEG abnormalities, but the low inoculum condition, associated with only microglial activation, drove a more subtle seizure and EEG phenotype.


Assuntos
Microglia , Theilovirus , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Monócitos/metabolismo , Convulsões/patologia
2.
Ann Neurol ; 85(4): 526-537, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30779222

RESUMO

OBJECTIVE: We recently reported successful treatment of a child with febrile infection-related epilepsy syndrome (FIRES), a subtype of new onset refractory status epilepticus, with the recombinant interleukin-1 (IL1) receptor antagonist (IL1RA) anakinra. On this basis, we tested whether endogenous IL1RA production or function is deficient in FIRES patients. METHODS: Levels of IL1ß and IL1RA were measured in serum and cerebrospinal fluid (CSF). The inhibitory activity of endogenous IL1RA was assessed using a cell-based reporter assay. IL1RN gene variants were identified by sequencing. Expression levels for the secreted and intracellular isoforms of IL1RA were measured in patient and control cells by real-time polymerase chain reaction. RESULTS: Levels of endogenous IL1RA and IL1ß were elevated in the serum and CSF of patients with FIRES (n = 7) relative to healthy controls (n = 10). Serum from FIRES patients drove IL1R signaling activity and potentiated IL1R signaling in response to exogenous IL1ß in a cell-based reporter assay. Functional assessment of endogenous IL1RA activity in 3 FIRES patients revealed attenuated inhibition of IL1R signaling. Sequencing of IL1RN in our index patient revealed multiple variants. This was accompanied by reduced expression of intracellular but not secreted isoforms of IL1RA in the patient's peripheral blood mononuclear cells. INTERPRETATION: Our findings suggest that FIRES is associated with reduced expression of intracellular IL1RA isoforms and a functional deficiency in IL1RA inhibitory activity. These observations may provide insight into disease pathogenesis for FIRES and other inflammatory seizure disorders and may provide a valuable biomarker for therapeutic decision-making. Ann Neurol 2019;85:526-537.


Assuntos
Epilepsia Resistente a Medicamentos/metabolismo , Síndromes Epilépticas/metabolismo , Infecções/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/sangue , Proteína Antagonista do Receptor de Interleucina 1/líquido cefalorraquidiano , Convulsões Febris/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Síndromes Epilépticas/diagnóstico , Síndromes Epilépticas/tratamento farmacológico , Feminino , Células HEK293 , Humanos , Infecções/diagnóstico , Infecções/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Masculino , Convulsões Febris/diagnóstico , Convulsões Febris/tratamento farmacológico
3.
J Cell Sci ; 129(20): 3911-3921, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591257

RESUMO

Inflammatory response of blood-brain barrier (BBB) endothelial cells plays an important role in pathogenesis of many central nervous system inflammatory diseases, including multiple sclerosis; however, the molecular mechanism mediating BBB endothelial cell inflammatory response remains unclear. In this study, we first observed that knockdown of neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, suppressed interferon-γ (IFNγ)-induced C-X-C motif chemokine 10 expression and activation of STAT1 in brain microvascular endothelial cells in a Rac1-dependent manner. Moreover, endothelial-specific NRP1-knockout mice, VECadherin-Cre-ERT2/NRP1flox/flox mice, showed attenuated disease progression during experimental autoimmune encephalomyelitis, a mouse neuroinflammatory disease model. Detailed analysis utilizing histological staining, quantitative PCR, flow cytometry and magnetic resonance imaging demonstrated that deletion of endothelial NRP1 suppressed neuron demyelination, altered lymphocyte infiltration, preserved BBB function and decreased activation of the STAT1-CXCL10 pathway. Furthermore, increased expression of NRP1 was observed in endothelial cells of acute multiple sclerosis lesions. Our data identify a new molecular mechanism of brain microvascular endothelial inflammatory response through NRP1-IFNγ crosstalk that could be a potential target for intervention of endothelial cell dysfunction in neuroinflammatory diseases.


Assuntos
Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Interferon gama/farmacologia , Microvasos/citologia , Neuropilina-1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Barreira Hematoencefálica/patologia , Quimiocina CXCL10 , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/efeitos dos fármacos , Deleção de Genes , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Epilepsia ; 59(9): 1753-1763, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30132834

RESUMO

OBJECTIVES: Although secondary hemophagocytic lymphohistiocytosis (HLH) has been reported in children with critical illness of various etiologies, it has not been reported in patients with febrile infection-related epilepsy syndrome (FIRES). We describe a series of patients with concurrent HLH and FIRES in an effort to establish common pathophysiologic abnormalities. METHODS: Five patients with FIRES who were assessed for HLH were identified from a neurocritical care database. All were previously healthy and had extensive diagnostic testing. All had clinical deterioration with multiorgan dysfunction prompting HLH screening 20-29 days after hospitalization. Markers for inflammatory dysregulation were assessed in cerebrospinal fluid (CSF) and serum at various time points. Outcomes were assessed 6 months after presentation. RESULTS: Three patients met clinical criteria for secondary HLH. Elevation of specific cytokines/chemokines was variable. CSF neopterin, high mobility group box 1 (HMGB1), and C-X-C motif chemokine ligand 8 (CXCL8) were significantly elevated in all. Interleukin-1ß (IL-1ß) and IL-18 were not elevated in any of the samples. Treatment and outcomes were variable. SIGNIFICANCE: We describe 3 patients with HLH and FIRES. The co-occurrence of these 2 rare disorders suggests the possibility of a common immune dysregulation phenotype prolonging epileptogenesis. HLH screening in critically ill patients with FIRES may yield a broader understanding of shared inflammatory processes.


Assuntos
Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/diagnóstico , Convulsões Febris/complicações , Anti-Inflamatórios/uso terapêutico , Criança , Pré-Escolar , Transtornos Cognitivos/etiologia , Estado Terminal , Citocinas/sangue , Citocinas/líquido cefalorraquidiano , Citocinas/metabolismo , Feminino , Seguimentos , Proteína HMGB1/líquido cefalorraquidiano , Humanos , Fatores Imunológicos/uso terapêutico , Linfo-Histiocitose Hemofagocítica/terapia , Masculino , Metilprednisolona/uso terapêutico , Neopterina/líquido cefalorraquidiano , Convulsões Febris/terapia
5.
J Neuroinflammation ; 14(1): 238, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202854

RESUMO

BACKGROUND: Viral encephalitis is a dangerous compromise between the need to robustly clear pathogen from the brain and the need to protect neurons from bystander injury. Theiler's murine encephalomyelitis virus (TMEV) infection of C57Bl/6 mice is a model of viral encephalitis in which the compromise results in hippocampal damage and permanent neurological sequelae. We previously identified brain-infiltrating inflammatory monocytes as the primary driver of this hippocampal pathology, but the mechanisms involved in recruiting these cells to the brain were unclear. METHODS: Chemokine expression levels in the hippocampus were assessed by microarray, ELISA, RT-PCR, and immunofluorescence. Monocyte infiltration during acute TMEV infection was measured by flow cytometry. CCL2 levels were manipulated by immunodepletion and by specific removal from neurons in mice generated by crossing a line expressing the Cre recombinase behind the synapsin promoter to animals with floxed CCL2. RESULTS: Inoculation of the brain with TMEV induced hippocampal production of the proinflammatory chemokine CCL2 that peaked at 6 h postinfection, whereas inoculation with UV-inactivated TMEV did not elicit this response. Immunofluorescence revealed that hippocampal neurons expressed high levels of CCL2 at this timepoint. Genetic deletion of CCR2 and systemic immunodepletion of CCL2 abrogated or blunted the infiltration of inflammatory monocytes into the brain during acute infection. Specific genetic deletion of CCL2 from neurons reduced serum and hippocampal CCL2 levels and inhibited inflammatory monocyte infiltration into the brain. CONCLUSIONS: We conclude that intracranial inoculation with infectious TMEV rapidly induces the expression of CCL2 in neurons, and this cellular source is necessary for CCR2-dependent infiltration of inflammatory monocytes into the brain during the most acute stage of encephalitis. These findings highlight a unique role for neuronal production of chemokines in the initiation of leukocytic infiltration into the infected central nervous system.


Assuntos
Quimiocina CCL2/biossíntese , Encefalite Viral/mortalidade , Hipocampo/patologia , Monócitos/imunologia , Neurônios/metabolismo , Animais , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/metabolismo , Infecções por Cardiovirus/patologia , Quimiotaxia de Leucócito/imunologia , Encefalite Viral/imunologia , Encefalite Viral/metabolismo , Encefalite Viral/patologia , Hipocampo/imunologia , Hipocampo/virologia , Camundongos , Camundongos Endogâmicos C57BL , Theilovirus
6.
Ann Neurol ; 80(6): 939-945, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27770579

RESUMO

Febrile infection-related epilepsy syndrome (FIRES) is a devastating epileptic encephalopathy with limited treatment options and an unclear etiology. Anakinra is a recombinant version of the human interleukin-1 receptor antagonist used to treat autoinflammatory disorders. This is the first report of anakinra for treatment of a child with super-refractory status epilepticus secondary to FIRES. Anakinra was well tolerated and effective. Cerebral spinal fluid analysis revealed elevated levels of proinflammatory cytokines before treatment that normalized on anakinra, suggesting a potential pathogenic role for neuroinflammation in FIRES. Further studies are required to assess anakinra efficacy and dosing, and to further delineate disease etiology. Ann Neurol 2016;80:939-945.


Assuntos
Encefalite Infecciosa/complicações , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Convulsões Febris/complicações , Estado Epiléptico/complicações , Estado Epiléptico/tratamento farmacológico , Pré-Escolar , Feminino , Humanos , Encefalite Infecciosa/líquido cefalorraquidiano , Encefalite Infecciosa/tratamento farmacológico , Mediadores da Inflamação/líquido cefalorraquidiano , Proteínas Recombinantes/uso terapêutico , Convulsões Febris/líquido cefalorraquidiano , Convulsões Febris/tratamento farmacológico , Estado Epiléptico/líquido cefalorraquidiano , Síndrome
7.
Glia ; 62(5): 692-708, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24492996

RESUMO

Neuromyelitis optica (NMO) is a primary astrocyte disease associated with central nervous system inflammation, demyelination, and tissue injury. Brain lesions are frequently observed in regions enriched in expression of the aquaporin-4 (AQP4) water channel, an antigenic target of the NMO IgG serologic marker. Based on observations of disease reversibility and careful characterization of NMO lesion development, we propose that the NMO IgG may induce a dynamic immunological response in astrocytes. Using primary rat astrocyte-enriched cultures and treatment with NMO patient-derived serum or purified IgG, we observed a robust pattern of gene expression changes consistent with the induction of a reactive and inflammatory phenotype in astrocytes. The reactive astrocyte factor lipocalin-2 and a broad spectrum of chemokines, cytokines, and stress response factors were induced by either NMO patient serum or purified IgG. Treatment with IgG from healthy controls had no effect. The effect is disease-specific, as serum from patients with relapsing-remitting multiple sclerosis, Sjögren's, or systemic lupus erythematosus did not induce a response in the cultures. We hypothesize that binding of the NMO IgG to AQP4 induces a cellular response that results in transcriptional and translational events within the astrocyte that are consistent with a reactive and inflammatory phenotype. Strategies aimed at reducing the inflammatory response of astrocytes may short circuit an amplification loop associated with NMO lesion development.


Assuntos
Astrócitos/imunologia , Imunidade Celular/imunologia , Imunoglobulina G/imunologia , Neuromielite Óptica/sangue , Neuromielite Óptica/imunologia , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Humanos , Imunidade Celular/efeitos dos fármacos , Imunoglobulina G/farmacologia , Ratos , Ratos Endogâmicos Lew
8.
Artigo em Inglês | MEDLINE | ID: mdl-37550073

RESUMO

BACKGROUND AND OBJECTIVES: Neural antibodies are detected by tissue-based indirect immunofluorescence assay (IFA) in Mayo Clinic's Neuroimmunology Laboratory practice, but the process of characterizing and validating novel antibodies is lengthy. We report our assessment of human protein arrays. METHODS: Assessment of arrays (81% human proteome coverage) was undertaken using diverse known positive samples (17 serum and 14 CSF). Samples from patients with novel neural antibodies were reflexed from IFA to arrays. Confirmatory assays were cell-based (CBA) or line blot. Epitope mapping was undertaken using phage display immunoprecipitation sequencing (PhiPSeq). RESULTS: Control positive samples known to be reactive with linear epitopes of intracellular antigens (e.g., ANNA-1 [anti-Hu]) were readily identified by arrays in 20 of 21 samples. By contrast, 10 positive controls known to be enriched with antibodies against cell surface protein conformational epitopes (e.g., GluN1 subunit of NMDA-R) were indistinguishable from background signal. Three antibodies, previously characterized by other investigators (but unclassified in our laboratory), were unmasked in 4 patients using arrays (July-December 2022): Neurexin-3α, 1 patient; regulator of gene protein signaling (RGS)8, 1 patient; and seizure-related homolog like 2 (SEZ6L2), 2 patients. All were accompanied by previously reported phenotypes (encephalitis, 1; cerebellar ataxia, 3). Patient 1 had subacute onset of seizures and encephalopathy. Neurexin-3α ranked high in CSF (second ranked neural protein) but low in serum (660th overall). Neurexin-3α CBA was positive in both samples. Patient 2 presented with rapidly progressive cerebellar ataxia. RGS8 ranked the highest neural protein in available CSF sample by array (third overall). RGS8-specific line blot was positive. Patients 3 and 4 had rapidly progressive cerebellar ataxia. SEZ6L2 was the highest ranked neural antigen by arrays in all samples (CSF, 1, serum, 2; Patient 3, ranked 9th overall in CSF, 11th in serum; Patient 4, 6th overall in serum]). By PhIPSeq, diverse neurexin-3α epitopes (including cell surface) were detected in CSF from patient 1, but no SEZ6L2 peptides were detected for serum or CSF samples from Patient 3. DISCUSSION: Individualized autoimmune neurologic diagnoses may be accelerated using protein arrays. They are optimal for detection of intracellular antigen-reactive antibodies, though certain cell surface-directed antibodies (neurexin-3α and SEZ6L2) may also be detected.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Ataxia Cerebelar , Proteínas RGS , Humanos , Análise Serial de Proteínas , Anticorpos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Epitopos
9.
Front Immunol ; 14: 1243946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795104

RESUMO

Introduction: The development of new autoantigen discovery techniques, like programmable phage immunoprecipitation sequencing (PhIP-Seq), has accelerated the discovery of neural-specific autoantibodies. Herein, we report the identification of a novel biomarker for paraneoplastic neurologic syndrome (PNS), Sloan-Kettering-Virus-Family-Transcriptional-Corepressor-2 (SKOR2)-IgG, utilizing PhIP-Seq. We have also performed a thorough clinical validation using normal, healthy, and disease/cancer control samples. Methods: Stored samples with unclassified staining at the junction of the Purkinje cell and the granule cell layers were analyzed by PhIP-Seq for putative autoantigen identification. The autoantigen was confirmed by recombinant antigen-expressing cell-based assay (CBA), Western blotting, and tissue immunofluorescence assay colocalization. Results: PhIP-Seq data revealed SKOR2 as the candidate autoantigen. The target antigen was confirmed by a recombinant SKOR-2-expressing, and cell lysate Western blot. Furthermore, IgG from both patient samples colocalized with a commercial SKOR2-specific IgG on cryosections of the mouse brain. Both SKOR2 IgG-positive patients had central nervous system involvement, one presenting with encephalitis and seizures (Patient 1) and the other with cognitive dysfunction, spastic ataxia, dysarthria, dysphagia, and pseudobulbar affect (Patient 2). They had a refractory progressive course and were diagnosed with adenocarcinoma (Patient 1: lung, Patient 2: gallbladder). Sera from adenocarcinoma patients without PNS (n=30) tested for SKOR2-IgG were negative. Discussion: SKOR2 IgG represents a novel biomarker for PNS associated with adenocarcinoma. Identification of additional SKOR2 IgG-positive cases will help categorize the associated neurological phenotype and the risk of underlying malignancy.


Assuntos
Adenocarcinoma , Síndromes Paraneoplásicas do Sistema Nervoso , Camundongos , Animais , Humanos , Biomarcadores , Autoantígenos , Imunoglobulina G
10.
J Neuroinflammation ; 9: 50, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22405261

RESUMO

BACKGROUND: Neuropathology caused by acute viral infection of the brain is associated with the development of persistent neurological deficits. Identification of the immune effectors responsible for injuring the brain during acute infection is necessary for the development of therapeutic strategies that reduce neuropathology but maintain immune control of the virus. METHODS: The identity of brain-infiltrating leukocytes was determined using microscopy and flow cytometry at several acute time points following intracranial infection of mice with the Theiler's murine encephalomyelitis virus. Behavioral consequences of immune cell depletion were assessed by Morris water maze. RESULTS: Inflammatory monocytes, defined as CD45hiCD11b++F4/80+Gr1+1A8-, and neutrophils, defined as CD45hiCD11b+++F4/80-Gr1+1A8+, were found in the brain at 12 h after infection. Flow cytometry of brain-infiltrating leukocytes collected from LysM: GFP reporter mice confirmed the identification of neutrophils and inflammatory monocytes in the brain. Microscopy of sections from infected LysM:GFP mice showed that infiltrating cells were concentrated in the hippocampal formation. Immunostaining confirmed that neutrophils and inflammatory monocytes were localized to the hippocampal formation at 12 h after infection. Immunodepletion of inflammatory monocytes and neutrophils but not of neutrophils only resulted in preservation of hippocampal neurons. Immunodepletion of inflammatory monocytes also preserved cognitive function as assessed by the Morris water maze. CONCLUSIONS: Neutrophils and inflammatory monocytes rapidly and robustly responded to Theiler's virus infection by infiltrating the brain. Inflammatory monocytes preceded neutrophils, but both cell types were present in the hippocampal formation at a timepoint that is consistent with a role in triggering hippocampal pathology. Depletion of inflammatory monocytes and neutrophils with the Gr1 antibody resulted in hippocampal neuroprotection and preservation of cognitive function. Specific depletion of neutrophils with the 1A8 antibody failed to preserve neurons, suggesting that inflammatory monocytes are the key effectors of brain injury during acute picornavirus infection of the brain. These effector cells may be important therapeutic targets for immunomodulatory or immunosuppressive therapies aimed at reducing or preventing central nervous system pathology associated with acute viral infection.


Assuntos
Infecções por Cardiovirus/patologia , Hipocampo/patologia , Monócitos/patologia , Infecções por Picornaviridae/patologia , Theilovirus , Doença Aguda , Animais , Infecções por Cardiovirus/imunologia , Feminino , Hipocampo/imunologia , Hipocampo/virologia , Inflamação/imunologia , Inflamação/patologia , Inflamação/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/virologia , Infiltração de Neutrófilos/imunologia , Infecções por Picornaviridae/imunologia , Theilovirus/imunologia
11.
Sci Rep ; 12(1): 3049, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197552

RESUMO

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Astrócitos/metabolismo , Crotonatos/farmacologia , Hidroxibutiratos/farmacologia , Inflamação/metabolismo , Nitrilas/farmacologia , Toluidinas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Quimiocinas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
12.
Am J Pathol ; 175(2): 668-84, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19608874

RESUMO

Many viruses, including picornaviruses, have the potential to infect the central nervous system (CNS) and stimulate a neuroinflammatory immune response, especially in infants and young children. Cognitive deficits associated with CNS picornavirus infection result from injury and death of neurons that may occur due to direct viral infection or during the immune responses to virus in the brain. Previous studies have concluded that apoptosis of hippocampal neurons during picornavirus infection is a cell-autonomous event triggered by direct neuronal infection. However, these studies assessed neuron death at time points late in infection and during infections that lead to either death of the host or persistent viral infection. In contrast, many neurovirulent picornavirus infections are acute and transient, with rapid clearance of virus from the host. We provide evidence of hippocampal pathology in mice acutely infected with the Theiler's murine encephalomyelitis picornavirus. We found that CA1 pyramidal neurons exhibited several hallmarks of apoptotic death, including caspase-3 activation, DNA fragmentation, and chromatin condensation within 72 hours of infection. Critically, we also found that many of the CA1 pyramidal neurons undergoing apoptosis were not infected with virus, indicating that neuronal cell death during acute picornavirus infection of the CNS occurs in a non-cell-autonomous manner. These observations suggest that therapeutic strategies other than antiviral interventions may be useful for neuroprotection during acute CNS picornavirus infection.


Assuntos
Apoptose , Hipocampo/patologia , Infecções por Picornaviridae/patologia , Células Piramidais/patologia , Theilovirus , Animais , Modelos Animais de Doenças , Hipocampo/virologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/virologia
13.
J Neuropathol Exp Neurol ; 68(9): 1037-48, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19680139

RESUMO

Axon injury is a major determinant of the loss of neurological function in patients with multiple sclerosis. It is unclear, however, whether damage to axons is an obligatory consequence of demyelination or whether it is an independent process that occurs in the permissive environment of demyelinated lesions. Previous investigations into the role of CD8 T cells and perforin in the Theiler murine encephalomyelitis virus model of multiple sclerosis have used mouse strains resistant to Theiler murine encephalomyelitis virus infection. To test the role of CD8 T cells in axon injury, we established a perforin-deficient mouse model on the H-2 major histocompatibility complex background thereby removing confounding factors related to viral biology in this Theiler murine encephalomyelitis virus-susceptible strain. This permitted direct comparison of clinical and pathological parameters between perforin-competent and perforin-deficient mice. The extent of demyelination was indistinguishable between perforin-competent and perforin-deficient H-2 mice, but chronically infected perforin-deficient mice exhibited preservation of motor function and spinal axons despite the presence of spinal cord demyelination. Thus, demyelination is necessary but insufficient for axon injury in this model; the absence of perforin protects axons without impacting demyelination. These results suggest that perforin is a key mediator of axon injury and lend additional support to the hypothesis that CD8 T cells are primarily responsible for axon damage in multiple sclerosis.


Assuntos
Axônios/patologia , Linfócitos T CD8-Positivos/imunologia , Doenças Desmielinizantes/genética , Esclerose Múltipla/genética , Esclerose Múltipla/fisiopatologia , Perforina/genética , Animais , Axônios/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Linfócitos T CD8-Positivos/patologia , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/imunologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Antígenos H-2/genética , Camundongos , Camundongos Knockout , Esclerose Múltipla/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medula Espinal/imunologia , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Theilovirus/genética , Theilovirus/imunologia
14.
Ann Clin Transl Neurol ; 5(2): 172-185, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468178

RESUMO

Objective: Injury-associated axon-intrinsic signals are thought to underlie pathogenesis and progression in many neuroinflammatory and neurodegenerative diseases, including multiple sclerosis (MS). Retrograde interferon gamma (IFN γ) signals are known to induce expression of major histocompatibility class I (MHC I) genes in murine axons, thereby increasing the susceptibility of these axons to attack by antigen-specific CD8+ T cells. We sought to determine whether the same is true in human neurons. Methods: A novel microisolation chamber design was used to physically isolate and manipulate axons from human skin fibroblast-derived induced pluripotent stem cell (iPSC)-derived neuron-enriched neural aggregates. Fluorescent retrobeads were used to assess the fraction of neurons with projections to the distal chamber. Axons were treated with IFN γ for 72 h and expression of MHC class I and antigen presentation genes were evaluated by RT-PCR and immunofluorescence. Results: Human iPSC-derived neural stem cells maintained as 3D aggregate cultures in the cell body chamber of polymer microisolation chambers extended dense axonal projections into the fluidically isolated distal chamber. Treatment of these axons with IFN γ resulted in upregulation of MHC class I and antigen processing genes in the neuron cell bodies. IFN γ-induced MHC class I molecules were also anterogradely transported into the distal axon. Interpretation: These results provide conclusive evidence that human axons are competent to express MHC class I molecules, suggesting that inflammatory factors enriched in demyelinated lesions may render axons vulnerable to attack by autoreactive CD8+ T cells in patients with MS. Future work will be aimed at identifying pathogenic anti-axonal T cells in these patients.

15.
J Neuroimmunol ; 188(1-2): 13-21, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17493690

RESUMO

Demyelination, a pathological hallmark of multiple sclerosis, may be a necessary but not a sufficient condition for motor dysfunction associated with this disease. We favor a neurodegenerative model of multiple sclerosis and suggest that demyelination creates a permissive environment wherein the denuded axon becomes susceptible to immune-mediated injury. Unfortunately, the cellular effectors responsible for eliciting such axonal injury are currently unknown. Based on previous observations implicating cytotoxic T cells in this injury, we assessed motor function, axon dropout, and axon injury following peptide depletion of the immunodominant CD8+ antiviral T cell response in the IFNgamma receptor-deficient mouse model of acute demyelination. We found that the targeted removal of this population of cytotoxic effector cells prior to infection with the Theiler's murine encephalomyelitis virus caused a substantial preservation of motor function at 45 days postinfection that was associated with preservation of retrograde axonal transport in a subpopulation of surviving axons within the spinal cord. We conclude that cytotoxic T cells may be responsible for the initiation of axon injury following demyelination.


Assuntos
Transporte Axonal/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Proteínas do Capsídeo/efeitos adversos , Infecções por Cardiovirus/complicações , Doenças Desmielinizantes/etiologia , Atividade Motora/fisiologia , Análise de Variância , Animais , Transporte Axonal/efeitos dos fármacos , Axônios/patologia , Comportamento Animal , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Citometria de Fluxo , Camundongos , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Receptores de Interferon/deficiência , Teste de Desempenho do Rota-Rod/métodos , Coloração pela Prata/métodos , Receptor de Interferon gama
16.
Sci Rep ; 6: 28699, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27345730

RESUMO

Neurologic complications associated with viral encephalitis, including seizures and cognitive impairment, are a global health issue, especially in children. We previously showed that hippocampal injury during acute picornavirus infection in mice is associated with calpain activation and is the result of neuronal death triggered by brain-infiltrating inflammatory monocytes. We therefore hypothesized that treatment with a calpain inhibitor would protect neurons from immune-mediated bystander injury. C57BL/6J mice infected with the Daniel's strain of Theiler's murine encephalomyelitis virus were treated with the FDA-approved drug ritonavir using a dosing regimen that resulted in plasma concentrations within the therapeutic range for calpain inhibition. Ritonavir treatment significantly reduced calpain activity in the hippocampus, protected hippocampal neurons from death, preserved cognitive performance, and suppressed seizure escalation, even when therapy was initiated 36 hours after disease onset. Calpain inhibition by ritonavir may be a powerful tool for preserving neurons and cognitive function and preventing neural circuit dysregulation in humans with neuroinflammatory disorders.


Assuntos
Calpaína/antagonistas & inibidores , Infecções por Cardiovirus/tratamento farmacológico , Inibidores de Cisteína Proteinase/farmacologia , Fármacos Neuroprotetores/farmacologia , Ritonavir/farmacologia , Theilovirus/metabolismo , Doença Aguda , Animais , Calpaína/metabolismo , Infecções por Cardiovirus/metabolismo , Infecções por Cardiovirus/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/virologia , Camundongos
17.
Sci Rep ; 2: 545, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848791

RESUMO

Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain.


Assuntos
Hipocampo/imunologia , Hipocampo/virologia , Monócitos/imunologia , Poliomielite/imunologia , Poliomielite/virologia , Theilovirus/fisiologia , Transferência Adotiva , Animais , Apoptose , Transplante de Medula Óssea , Transtornos Cognitivos/etiologia , Modelos Animais de Doenças , Feminino , Hipocampo/patologia , Imunofenotipagem , Masculino , Camundongos , Monócitos/citologia , Monócitos/metabolismo , Neurônios/patologia , Poliomielite/patologia , Tropismo Viral , Replicação Viral
18.
J Vis Exp ; (52)2011 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-21694694

RESUMO

We describe a method for preparing brain infiltrating leukocytes (BILs) from mice. We demonstrate how to infect mice with Theiler's murine encephalomyelitis virus (TMEV) via a rapid intracranial injection technique and how to purify a leukocyte-enriched population of infiltrating cells from whole brain. Briefly, mice are anesthetized with isoflurane in a closed chamber and are free-hand injected with a Hamilton syringe into the frontal cortex. Mice are then killed at various times after infection by isoflurane overdose and whole brains are extracted and homogenized in RPMI with a Tenbroeck tissue grinder. Brain homogenates are centrifuged through a continuous 30% Percoll gradient to remove the myelin and other cell debris. The cell suspension is then strained at 40 µm, washed and centrifuged on a discontinuous Ficoll-Paque Plus gradient to select and purify the leukocytes. The leukocytes are then washed and resuspended in appropriate buffers for immunophenotyping by flow cytometry. Flow cytometry reveals a population of innate immune cells at the early stages of infection in C57BL/6 mice. At 24 hours post infection, multiple subsets of immune cells are present in the BILs, with an enriched population of Gr1(+), CD11b(+) and F4/80(+)cells. Therefore, this method is useful in characterizing the immune response to acute infection in the brain.


Assuntos
Encéfalo/citologia , Técnicas Citológicas/métodos , Leucócitos/citologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/patologia , Infecções por Cardiovirus/virologia , Citometria de Fluxo/métodos , Lobo Frontal/citologia , Lobo Frontal/imunologia , Lobo Frontal/patologia , Lobo Frontal/virologia , Imunofenotipagem/métodos , Leucócitos/imunologia , Leucócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Theilovirus
19.
PLoS One ; 5(8): e12478, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20814579

RESUMO

BACKGROUND: The objective of this study was to test the hypothesis that CD8+ T cells directly mediate motor disability and axon injury in the demyelinated central nervous system. We have previously observed that genetic deletion of the CD8+ T cell effector molecule perforin leads to preservation of motor function and preservation of spinal axons in chronically demyelinated mice. METHODOLOGY/PRINCIPAL FINDINGS: To determine if CD8+ T cells are necessary and sufficient to directly injure demyelinated axons, we adoptively transferred purified perforin-competent CD8+ spinal cord-infiltrating T cells into profoundly demyelinated but functionally preserved perforin-deficient host mice. Transfer of CD8+ spinal cord-infiltrating T cells rapidly and irreversibly impaired motor function, disrupted spinal cord motor conduction, and reduced the number of medium- and large-caliber spinal axons. Likewise, immunodepletion of CD8+ T cells from chronically demyelinated wildtype mice preserved motor function and limited axon loss without altering other disease parameters. CONCLUSIONS/SIGNIFICANCE: In multiple sclerosis patients, CD8+ T cells outnumber CD4+ T cells in active lesions and the number of CD8+ T cells correlates with the extent of ongoing axon injury and functional disability. Our findings suggest that CD8+ T cells may directly injure demyelinated axons and are therefore a viable therapeutic target to protect axons and motor function in patients with multiple sclerosis.


Assuntos
Axônios/imunologia , Axônios/patologia , Linfócitos T CD8-Positivos/imunologia , Atividade Motora/imunologia , Atividade Motora/fisiologia , Esclerose Múltipla/patologia , Esclerose Múltipla/fisiopatologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Doenças Desmielinizantes/imunologia , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade/metabolismo , Leucócitos/imunologia , Masculino , Camundongos , Córtex Motor/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Perforina/deficiência , Perforina/metabolismo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA