Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Br J Cancer ; 124(2): 474-483, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33082556

RESUMO

BACKGROUND: Chronic lymphocytic leukaemia (CLL) patients display a highly variable clinical course, with progressive acquisition of drug resistance. We sought to identify aberrant epigenetic traits that are enriched following exposure to treatment that could impact patient response to therapy. METHODS: Epigenome-wide analysis of DNA methylation was performed for 20 patients at two timepoints during treatment. The prognostic significance of differentially methylated regions (DMRs) was assessed in independent cohorts of 139 and 163 patients. Their functional role in drug sensitivity was assessed in vitro. RESULTS: We identified 490 DMRs following exposure to therapy, of which 31 were CLL-specific and independent of changes occurring in normal B-cell development. Seventeen DMR-associated genes were identified as differentially expressed following treatment in an independent cohort. Methylation of the HOXA4, MAFB and SLCO3A1 DMRs was associated with post-treatment patient survival, with HOXA4 displaying the strongest association. Re-expression of HOXA4 in cell lines and primary CLL cells significantly increased apoptosis in response to treatment with fludarabine, ibrutinib and idelalisib. CONCLUSION: Our study demonstrates enrichment for multiple CLL-specific epigenetic traits in response to chemotherapy that predict patient outcomes, and particularly implicate epigenetic silencing of HOXA4 in reducing the sensitivity of CLL cells to therapy.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Homeodomínio/genética , Leucemia Linfocítica Crônica de Células B/genética , Recidiva Local de Neoplasia/genética , Fatores de Transcrição/genética , Metilação de DNA/genética , Epigenômica , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Masculino
2.
Oncogene ; 40(33): 5213-5223, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34230614

RESUMO

The identification of cancer-specific vulnerability genes is one of the most promising approaches for developing more effective and less toxic cancer treatments. Cancer genomes exhibit thousands of changes in DNA methylation and gene expression, with the vast majority likely to be passenger changes. We hypothesised that, through integration of genome-wide DNA methylation/expression data, we could exploit this inherent variability to identify cancer subtype-specific vulnerability genes that would represent novel therapeutic targets that could allow cancer-specific cell killing. We developed a bioinformatics pipeline integrating genome-wide DNA methylation/gene expression data to identify candidate subtype-specific vulnerability partner genes for the genetic drivers of individual genetic/molecular subtypes. Using acute lymphoblastic leukaemia as an initial model, 21 candidate subtype-specific vulnerability genes were identified across the five common genetic subtypes, with at least one per subtype. To confirm the approach was applicable across cancer types, we also assessed medulloblastoma, identifying 15 candidate subtype-specific vulnerability genes across three of four established subtypes. Almost all identified genes had not previously been implicated in these diseases. Functional analysis of seven candidate subtype-specific vulnerability genes across the two tumour types confirmed that siRNA-mediated knockdown induced significant inhibition of proliferation/induction of apoptosis, which was specific to the cancer subtype in which the gene was predicted to be specifically lethal. Thus, we present a novel approach that integrates genome-wide DNA methylation/expression data to identify cancer subtype-specific vulnerability genes as novel therapeutic targets. We demonstrate this approach is applicable to multiple cancer types and identifies true functional subtype-specific vulnerability genes with high efficiency.


Assuntos
Oncogenes , Apoptose , Metilação de DNA , Humanos , Meduloblastoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Processamento de Proteína Pós-Traducional
3.
Epigenetics ; 10(8): 717-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26237075

RESUMO

Although children with acute lymphoblastic leukemia (ALL) generally have a good outcome, some patients do relapse and survival following relapse is poor. Altered DNA methylation is highly prevalent in ALL and raises the possibility that DNA methylation-based biomarkers could predict patient outcome. In this study, genome-wide methylation analysis, using the Illumina Infinium HumanMethylation450 BeadChip platform, was carried out on 52 diagnostic patient samples from 4 genetic subtypes [ETV6-RUNX1, high hyperdiploidy (HeH), TCF3-PBX1 and dic(9;20)(p11-13;q11)] in a 1:1 case-control design with patients who went on to relapse (as cases) and patients achieving long-term remission (as controls). Pyrosequencing assays for selected loci were used to confirm the array-generated data. Non-negative matrix factorization consensus clustering readily clustered samples according to genetic subgroups and gene enrichment pathway analysis suggested that this is in part driven by epigenetic disruption of subtype specific signaling pathways. Multiple bioinformatics approaches (including bump hunting and individual locus analysis) were used to identify CpG sites or regions associated with outcome. However, no associations with relapse were identified. Our data revealed that ETV6-RUNX1 and dic(9;20) subtypes were mostly associated with hypermethylation; conversely, TCF3-PBX1 and HeH were associated with hypomethylation. We observed significant enrichment of the neuroactive ligand-receptor interaction pathway in TCF3-PBX1 as well as an enrichment of genes involved in immunity and infection pathways in ETV6-RUNX1 subtype. Taken together, our results suggest that altered DNA methylation may have differential impacts in distinct ALL genetic subtypes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Epigenômica , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , Criança , Pré-Escolar , Ilhas de CpG/genética , Genoma Humano , Humanos , Lactente , Proteínas de Fusão Oncogênica/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B , Leucemia-Linfoma Linfoblástico de Células Precursoras/classificação , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Recidiva , Variante 6 da Proteína do Fator de Translocação ETS
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA