Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Comput Aided Mol Des ; 34(11): 1117-1132, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32833084

RESUMO

There is a pressing need to improve the efficiency of drug development, and nowhere is that need more clear than in the case of neglected diseases like malaria. The peculiarities of pyrimidine metabolism in Plasmodium species make inhibition of dihydroorotate dehydrogenase (DHODH) an attractive target for antimalarial drug design. By applying a pair of complementary quantitative structure-activity relationships derived for inhibition of a truncated, soluble form of the enzyme from Plasmodium falciparum (s-PfDHODH) to data from a large-scale phenotypic screen against cultured parasites, we were able to identify a class of antimalarial leads that inhibit the enzyme and abolish parasite growth in blood culture. Novel analogs extending that class were designed and synthesized with a goal of improving potency as well as the general pharmacokinetic and toxicological profiles. Their synthesis also represented an opportunity to prospectively validate our in silico property predictions. The seven analogs synthesized exhibited physicochemical properties in good agreement with prediction, and five of them were more active against P. falciparum growing in blood culture than any of the compounds in the published lead series. The particular analogs prepared did not inhibit s-PfDHODH in vitro, but advanced biological assays indicated that other examples from the class did inhibit intact PfDHODH bound to the mitochondrial membrane. The new analogs, however, killed the parasites by acting through some other, unidentified mechanism 24-48 h before PfDHODH inhibition would be expected to do so.


Assuntos
Antimaláricos/química , Inibidores Enzimáticos/química , Malária Falciparum/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Quinolonas/química , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Di-Hidro-Orotato Desidrogenase , Desenho de Fármacos , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/farmacocinética , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Quinolonas/efeitos adversos , Quinolonas/farmacocinética
2.
Anal Biochem ; 506: 13-21, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27133204

RESUMO

Plasmodium dihydroorotate dehydrogenase (DHODH) is a mitochondrial membrane-associated flavoenzyme that catalyzes the rate-limiting step of de novo pyrimidine biosynthesis. DHODH is a validated target for malaria, and DSM265, a potent inhibitor, is currently in clinical trials. The enzyme catalyzes the oxidation of dihydroorotate to orotate using flavin mononucleotide (FMN) as cofactor in the first half of the reaction. Reoxidation of FMN to regenerate the active enzyme is mediated by ubiquinone (CoQD), which is the physiological final electron acceptor and second substrate of the reaction. We have developed a fluorescence-based high-throughput enzymatic assay to find DHODH inhibitors. In this assay, the CoQD has been replaced by a redox-sensitive fluorogenic dye, resazurin, which changes to a fluorescent state on reduction to resorufin. Remarkably, the assay sensitivity to find competitive inhibitors of the second substrate is higher than that reported for the standard colorimetric assay. It is amenable to 1536-well plates with Z' values close to 0.8. The fact that the human enzyme can also be assayed in the same format opens additional applications of this assay to the discovery of inhibitors to treat cancer, transplant rejection, autoimmune diseases, and other diseases mediated by rapid cellular growth.


Assuntos
Inibidores Enzimáticos/análise , Inibidores Enzimáticos/química , Fluorescência , Ensaios de Triagem em Larga Escala , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium/enzimologia , Di-Hidro-Orotato Desidrogenase , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Relação Estrutura-Atividade
3.
Nat Commun ; 8(1): 430, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874661

RESUMO

To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC50 of 160 pM in a PfPKG kinase assay and inhibits P. falciparum blood stage proliferation in vitro with an EC50 of 2.1 nM. Oral dosing renders blood stage parasitaemia undetectable in vivo using a P. falciparum SCID mouse model. The series targets both merozoite egress and erythrocyte invasion, but crucially, also blocks transmission of mature P. falciparum gametocytes to Anopheles stephensi mosquitoes. A co-crystal structure of PvPKG bound to ML10, reveals intimate molecular contacts that explain the high levels of potency and selectivity we have measured. The properties of this series warrant consideration for further development to produce an antimalarial drug.Protein kinases are promising drug targets for treatment of malaria. Here, starting with a medicinal chemistry approach, Baker et al. generate an imidazopyridine that selectively targets Plasmodium falciparum PKG, inhibits blood stage parasite growth in vitro and in mice and blocks transmission to mosquitoes.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Imidazóis/uso terapêutico , Malária/enzimologia , Malária/transmissão , Piridinas/uso terapêutico , Animais , Linhagem Celular , Cristalografia por Raios X , Culicidae , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Camundongos Endogâmicos BALB C , Modelos Moleculares , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Resultado do Tratamento
4.
Proc Natl Acad Sci U S A ; 104(8): 2709-14, 2007 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-17296936

RESUMO

Mutations in the human methyl-CpG-binding protein gene MECP2 cause the neurological disorder Rett syndrome and some cases of X-linked mental retardation (XLMR). We report that MeCP2 interacts with ATRX, a SWI2/SNF2 DNA helicase/ATPase that is mutated in ATRX syndrome (alpha-thalassemia/mental retardation, X-linked). MeCP2 can recruit the helicase domain of ATRX to heterochromatic foci in living mouse cells in a DNA methylation-dependent manner. Also, ATRX localization is disrupted in neurons of Mecp2-null mice. Point mutations within the methylated DNA-binding domain of MeCP2 that cause Rett syndrome or X-linked mental retardation inhibit its interaction with ATRX in vitro and its localization in vivo without affecting methyl-CpG binding. We propose that disruption of the MeCP2-ATRX interaction leads to pathological changes that contribute to mental retardation.


Assuntos
DNA Helicases/metabolismo , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação/genética , Proteínas Nucleares/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , DNA/metabolismo , DNA Helicases/química , Metilação de DNA , Humanos , Proteína 2 de Ligação a Metil-CpG/deficiência , Camundongos , Proteínas Nucleares/química , Ligação Proteica , Transporte Proteico , Técnicas do Sistema de Duplo-Híbrido , Proteína Nuclear Ligada ao X
5.
EMBO Rep ; 4(3): 307-12, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12634851

RESUMO

The Par4 gene was first identified in prostate cells undergoing apoptosis after androgen withdrawal. PAR4 was subsequently shown to interact with, and inhibit, atypical protein kinase C isoforms, functioning as a negative regulator of the NF-kappaB pathway. This may explain its pro-apoptotic function in overexpression experiments. To determine the physiological role of PAR4, we have derived primary embryonic fibroblasts (EFs) from Par4(-/-) mice. We show here that loss of PAR4 leads to a reduction in the ability of tumour necrosis factor-alpha (TNF-alpha) to induce apoptosis by increased activation of NF-kappaB. Consistent with recent reports demonstrating the antagonistic actions of NF-kappaB and c-Jun amino-terminal kinase (JNK) signalling, we have found that Par4(-/-) cells show a reduced activation of the sustained phase of JNK and p38 stimulation by TNF-alpha and interleukin 1. Higher levels of an anti-apoptotic JNK-inhibitor protein, X-chromosome-linked inhibitor of apoptosis, in Par4(-/-) EFs might explain the inhibition of JNK activation in these cells.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Receptores de Trombina/deficiência , Receptores de Trombina/fisiologia , Animais , Apoptose/efeitos dos fármacos , Embrião de Mamíferos , Fibroblastos/fisiologia , Regulação da Expressão Gênica , Interleucina-1/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Receptores de Trombina/genética , Mapeamento por Restrição , Fator de Necrose Tumoral alfa/farmacologia , Cromossomo X , Proteínas Quinases p38 Ativadas por Mitógeno
6.
EMBO J ; 22(18): 4689-98, 2003 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12970181

RESUMO

The genetic inactivation of the atypical protein kinase C (aPKC) inhibitor, Par-4, gives rise to increased NF-kappaB activation and decreased stimulation of JNK in embryo fibroblasts. Here we have characterized the immunological phenotype of the Par-4(-/-) mice and found that the loss of this gene leads to an increased proliferative response of peripheral T cells when challenged through the TCR. This is accompanied by a higher increase in cell cycle entry and inhibition of apoptosis, with enhanced IL-2 secretion but normal CD25 synthesis. Interestingly, the TCR-triggered activation of NF-kappaB was augmented and that of JNK was severely abrogated. Consistent with previous data from knock outs of different JNKs, NFATc1 activation and IL-4 secretion were augmented in the Par-4-deficient CD4+ T cells, suggesting that the loss of Par-4 drives T-cell differentiation towards a Th2 response. This is compelling evidence that Par-4 is a novel modulator of the immune response through its ability to impact aPKC activity, which translates into lower JNK signaling.


Assuntos
Proteínas de Transporte/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Ativação Linfocitária/fisiologia , Linfócitos T/citologia , Linfócitos T/imunologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Proteínas de Transporte/genética , Ciclo Celular , Diferenciação Celular , Divisão Celular/genética , Deleção de Genes , Proteínas Quinases JNK Ativadas por Mitógeno , Ativação Linfocitária/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fatores de Transcrição NFATC , Proteína Quinase C/deficiência , Proteína Quinase C/genética , Proteína Quinase C/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia
7.
Microbiology (Reading) ; 148(Pt 7): 2111-2123, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12101299

RESUMO

The DUP240 gene family of Saccharomyces cerevisiae is composed of 10 members. They encode proteins of about 240 amino acids which contain two predicted transmembrane domains. Database searches identified only one homologue in the closely related species Saccharomyces bayanus, indicating that the DUP240 genes encode proteins specific to Saccharomyces sensu stricto. The short-flanking homology PCR gene-replacement strategy with a variety of selective markers for replacements, and classical genetic methods, were used to generate strains deleted for all 10 DUP240 genes. All of the knock-out strains were viable and had similar growth kinetics to the wild-type. Two-hybrid screens, hSos1p fusions and GFP fusions were carried out; the results indicated that the Dup240 proteins are membrane associated, and that some of them are concentrated around the plasma membrane.


Assuntos
Proteínas de Membrana/metabolismo , Família Multigênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Membrana Celular/metabolismo , Deleção de Genes , Genes Essenciais , Proteínas de Fluorescência Verde , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/genética , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Frações Subcelulares/metabolismo , Sequências de Repetição em Tandem/genética , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA