Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mod Pathol ; 29(9): 962-76, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27230413

RESUMO

Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.


Assuntos
Agenesia do Corpo Caloso/patologia , Axônios/patologia , Encéfalo/patologia , Doenças do Sistema Nervoso Periférico/patologia , Sistema Nervoso Periférico/patologia , Simportadores/genética , Adulto , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/metabolismo , Agenesia do Corpo Caloso/fisiopatologia , Autopsia , Axônios/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Degeneração Neural , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/fisiopatologia , Fenótipo , Prognóstico , Simportadores/metabolismo , Adulto Jovem
2.
Hum Mol Genet ; 21(10): 2211-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22337953

RESUMO

Spinocerebellar ataxia type 3 is caused by the expansion of the coding CAG repeat in the ATXN3 gene. Interestingly, a -1 bp frameshift occurring within an (exp)CAG repeat would henceforth lead to translation from a GCA frame, generating polyalanine stretches instead of polyglutamine. Our results show that transgenic expression of (exp)CAG ATXN3 led to -1 frameshifting events, which have deleterious effects in Drosophila and mammalian neurons. Conversely, transgenic expression of polyglutamine-encoding (exp)CAA ATXN3 was not toxic. Furthermore, (exp)CAG ATXN3 mRNA does not contribute per se to the toxicity observed in our models. Our observations indicate that expanded polyglutamine tracts in Drosophila and mouse neurons are insufficient for the development of a phenotype. Hence, we propose that -1 ribosomal frameshifting contributes to the toxicity associated with (exp)CAG repeats.


Assuntos
Drosophila/genética , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados , Ataxina-3 , Drosophila/metabolismo , Imuno-Histoquímica , Doença de Machado-Joseph/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptídeos/química , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transfecção , Expansão das Repetições de Trinucleotídeos
3.
J Neurosci ; 32(11): 3865-76, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22423107

RESUMO

Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance.


Assuntos
Agenesia do Corpo Caloso/genética , Modelos Animais de Doenças , Neuropatia Hereditária Motora e Sensorial/genética , Fenótipo , Simportadores/deficiência , Agenesia do Corpo Caloso/metabolismo , Agenesia do Corpo Caloso/patologia , Animais , Feminino , Neuropatia Hereditária Motora e Sensorial/metabolismo , Neuropatia Hereditária Motora e Sensorial/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Simportadores/biossíntese , Simportadores/genética
4.
J Biol Chem ; 286(32): 28456-65, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21628467

RESUMO

Missense and protein-truncating mutations of the human potassium-chloride co-transporter 3 gene (KCC3) cause hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe neurodegenerative disease characterized by axonal dysfunction and neurodevelopmental defects. We previously reported that KCC3-truncating mutations disrupt brain-type creatine kinase-dependent activation of the co-transporter through the loss of its last 140 amino acids. Here, we report a novel and more distal HMSN/ACC-truncating mutation (3402C → T; R1134X) that eliminates only the last 17 residues of the protein. This small truncation disrupts the interaction with brain-type creatine kinase in mammalian cells but also affects plasma membrane localization of the mutant transporter. Although it is not truncated, the previously reported HMSN/ACC-causing 619C → T (R207C) missense mutation also leads to KCC3 loss of function in Xenopus oocyte flux assay. Immunodetection in Xenopus oocytes and in mammalian cultured cells revealed a decreased amount of R207C at the plasma membrane, with significant retention of the mutant proteins in the endoplasmic reticulum. In mammalian cells, curcumin partially corrected these mutant protein mislocalizations, with more protein reaching the plasma membrane. These findings suggest that mis-trafficking of mutant protein is an important pathophysiological feature of HMSN/ACC causative KCC3 mutations.


Assuntos
Agenesia do Corpo Caloso/metabolismo , Substituição de Aminoácidos , Neuropatia Hereditária Motora e Sensorial/metabolismo , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/metabolismo , Simportadores/metabolismo , Agenesia do Corpo Caloso/genética , Sequência de Aminoácidos , Animais , Células HeLa , Neuropatia Hereditária Motora e Sensorial/genética , Humanos , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Deleção de Sequência , Simportadores/genética , Xenopus laevis
5.
J Clin Invest ; 118(7): 2496-505, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18521183

RESUMO

Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Adolescente , Processamento Alternativo , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Expressão Gênica , Heterozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Raízes Nervosas Espinhais/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK
6.
Hum Mol Genet ; 17(17): 2703-11, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566107

RESUMO

The potassium-chloride co-transporter 3 (KCC3) is mutated in hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC); however, the molecular mechanisms of HMSN/ACC pathogenesis and the exact role of KCC3 in the development of the nervous system remain poorly understood. The functional regulation of this transporter by protein partners is also largely unknown. Using a yeast two-hybrid approach, we discovered that the C-terminal domain (CTD) of KCC3, which is lost in most HMSN/ACC-causing mutations, directly interacts with brain-specific creatine kinase (CK-B), an ATP-generating enzyme that is also a partner of KCC2. The interaction of KCC3 with CK-B was further confirmed by in vitro glutathione S-transferase pull-down assay, followed by sequencing of the pulled-down complexes. In transfected cultured cells, immunofluorescence labeling showed that CK-B co-localizes with wild-type KCC3, whereas the kinase fails to interact with the inactive truncated KCC3. Finally, CK-B's inhibition by DNFB results in reduction of activity of KCC3 in functional assays using Xenopus laevis oocytes. This physical and functional association between the co-transporter and CK-B is, therefore, the first protein-protein interaction identified to be potentially involved in the pathophysiology of HMSN/ACC.


Assuntos
Creatina Quinase Forma BB/metabolismo , Neuropatia Hereditária Motora e Sensorial/metabolismo , Simportadores/genética , Simportadores/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Feminino , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Ligação Proteica , Simportadores/química , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis
7.
Neurology ; 91(6): e551-e561, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30006409

RESUMO

OBJECTIVE: To explore valproic acid (VPA) as a potentially beneficial drug in cellular and worm models of oculopharyngeal muscular dystrophy (OPMD). METHODS: Using a combination of live cell imaging and biochemical measures, we evaluated the potential protective effect of VPA in a stable C2C12 muscle cell model of OPMD, in lymphoblastoid cell lines derived from patients with OPMD and in a transgenic Caenorhabditis elegans OPMD model expressing human mutant PABPN1. RESULTS: We demonstrated that VPA protects against the toxicity of mutant PABPN1. Of note, we found that VPA confers its long-term protective effects on C2C12 cell survival, proliferation, and differentiation by increasing the acetylated level of histones. Furthermore, VPA enhances the level of histone acetylation in lymphoblastoid cell lines derived from patients with OPMD. Moreover, treatment of nematodes with moderate concentrations of VPA significantly improved the motility of the PABPN-13 Alanines worms. CONCLUSIONS: Our results suggest that VPA helps to counteract OPMD-related phenotypes in the cellular and C elegans disease models.


Assuntos
Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Distrofia Muscular Oculofaríngea/patologia , Distrofia Muscular Oculofaríngea/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Ácido Valproico/uso terapêutico , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/farmacologia , Caenorhabditis elegans , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Humanos , Camundongos , Distrofia Muscular Oculofaríngea/genética , Fármacos Neuroprotetores/farmacologia , Proteína I de Ligação a Poli(A)/genética , Ácido Valproico/farmacologia
8.
Sci Signal ; 9(421): ra32, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-27025876

RESUMO

HSN2is a nervous system predominant exon of the gene encoding the kinase WNK1 and is mutated in an autosomal recessive, inherited form of congenital pain insensitivity. The HSN2-containing splice variant is referred to as WNK1/HSN2. We created a knockout mouse specifically lacking theHsn2exon ofWnk1 Although these mice had normal spinal neuron and peripheral sensory neuron morphology and distribution, the mice were less susceptible to hypersensitivity to cold and mechanical stimuli after peripheral nerve injury. In contrast, thermal and mechanical nociceptive responses were similar to control mice in an inflammation-induced pain model. In the nerve injury model of neuropathic pain, WNK1/HSN2 contributed to a maladaptive decrease in the activity of the K(+)-Cl(-)cotransporter KCC2 by increasing its inhibitory phosphorylation at Thr(906)and Thr(1007), resulting in an associated loss of GABA (γ-aminobutyric acid)-mediated inhibition of spinal pain-transmitting nerves. Electrophysiological analysis showed that WNK1/HSN2 shifted the concentration of Cl(-)such that GABA signaling resulted in a less hyperpolarized state (increased neuronal activity) rather than a more hyperpolarized state (decreased neuronal activity) in mouse spinal nerves. Pharmacologically antagonizing WNK activity reduced cold allodynia and mechanical hyperalgesia, decreased KCC2 Thr(906)and Thr(1007)phosphorylation, and restored GABA-mediated inhibition (hyperpolarization) of injured spinal cord lamina II neurons. These data provide mechanistic insight into, and a compelling therapeutic target for treating, neuropathic pain after nerve injury.


Assuntos
Hiperalgesia/metabolismo , Neuralgia/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Nervos Espinhais/metabolismo , Transmissão Sináptica , Ácido gama-Aminobutírico/metabolismo , Animais , Modelos Animais de Doenças , Éxons , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Hiperalgesia/prevenção & controle , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Neuralgia/genética , Neuralgia/fisiopatologia , Neuralgia/prevenção & controle , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Traumatismos dos Nervos Periféricos/prevenção & controle , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Nervos Espinhais/patologia , Simportadores/genética , Simportadores/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK , Ácido gama-Aminobutírico/genética , Cotransportadores de K e Cl-
9.
Can J Neurol Sci ; 30(3): 244-51, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12945950

RESUMO

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset disorder characterized by progressive ptosis, dysphagia and proximal limb weakness. The autosomal dominant form of this disease is caused by short expansions of a (GCG)6 repeat to (GCG) in the PABPN1 gene. The mutations lead to the expansion of a polyalanine stretch from 10 to 12-17 alanines in the N-terminus of PABPN1. The mutated PABPN1 (mPABPN1) induces the formation of intranuclear filamentous inclusions that sequester poly(A) RNA and are associated with cell death. METHODS: Human fetal brain cDNA library was used to look for PABPNI binding proteins using yeast two-hybrid screen. The protein interaction was confirmed by GST pull-down and co-immunoprecipitation assays. Oculopharyngeal muscular dystrophy cellular model and OPMD patient muscle tissue were used to check whether the PABPN1 binding proteins were involved in the formation of OPMD intranuclear inclusions. RESULTS: We identify two PABPNI interacting proteins, hnRNP A1 and hnRNP A/B. When co-expressed with mPABPN1 in COS-7 cells, predominantly nuclear protein hnRNP A1 and A/B co-localize with mPABPN1 in the insoluble intranuclear aggregates. Patient studies showed that hnRNP A1 is sequestered in OPMD nuclear inclusions. CONCLUSIONS: The hnRNP proteins are involved in mRNA processing and mRNA nucleocytoplasmic export, sequestering of hnRNPs in OPMD intranuclear aggregates supports the view that OPMD intranuclear inclusions are "poly(A) RNA traps", which would interfere with RNA export, and cause muscle cell death.


Assuntos
Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Distrofia Muscular Oculofaríngea/metabolismo , Proteína II de Ligação a Poli(A)/metabolismo , Animais , Células COS , Núcleo Celular/metabolismo , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Corpos de Inclusão/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Peptídeos/farmacologia , Proteína II de Ligação a Poli(A)/química , Proteína II de Ligação a Poli(A)/efeitos dos fármacos , Testes de Precipitina , Solubilidade , Distribuição Tecidual
10.
PLoS One ; 8(2): e57807, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451271

RESUMO

The With No lysine (K) family of serine/threonine kinase (WNK) defines a small family of kinases with significant roles in ion homeostasis. WNK1 has been shown to have different isoforms due to what seems to be largely tissue specific splicing. Here, we used two distinct in situ hybridization riboprobes on developing and adult mouse tissues to make a comparative analysis of Wnk1 and its sensory associated splice isoform, Wnk1/Hsn2. The hybridization signals in developing mouse tissues, which were prepared at embryonic day e10.5 and e12.5, revealed a homogenous expression profile with both probes. At e15.5 and in the newborn mouse, the two probes revealed different expression profiles with prominent signals in nervous system tissues and also other tissues such as kidney, thymus and testis. In adult mouse tissues, the two expression profiles appeared even more restricted to the nervous tissues, kidney, thymus and testis, with no detectable signal in the other tissues. Throughout the nervous system, sensory tissues, as well as in Cornu Ammonis 1 (CA1), CA2 and CA3 areas of the hippocampus, were strongly labeled with both probes. Hybridization signals were also strongly detected in Schwann and supporting satellite cells. Our results show that the expression profiles of Wnk1 isoforms change during the development, and that the expression of the Wnk1 splice variant containing the Hsn2 exon is prominent during developing and in adult mouse tissues, suggesting its important role in the development and maintenance of the nervous system.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Proteínas Serina-Treonina Quinases/genética , Processamento Alternativo , Animais , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Rim/metabolismo , Masculino , Camundongos , Antígenos de Histocompatibilidade Menor , Sistema Nervoso/metabolismo , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , RNA Mensageiro/genética , Ratos , Testículo/metabolismo , Timo/metabolismo , Transcriptoma , Proteína Quinase 1 Deficiente de Lisina WNK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA