Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hepatology ; 76(2): 357-371, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34890068

RESUMO

BACKGROUND AND AIMS: Hepatocyte transplantation holds great promise as an alternative approach to whole-organ transplantation. Intraportal and intrasplenic cell infusions are primary hepatocyte transplantation delivery routes for this procedure. However, patients with severe liver diseases often have disrupted liver and spleen architectures, which introduce risks in the engraftment process. We previously demonstrated i.p. injection of hepatocytes as an alternative route of delivery that could benefit this subpopulation of patients, particularly if less invasive and low-risk procedures are required; and we have established that lymph nodes may serve as extrahepatic sites for hepatocyte engraftment. However, whether other niches in the abdominal cavity support the survival and proliferation of the transplanted hepatocytes remains unclear. APPROACH AND RESULTS: Here, we showed that hepatocytes transplanted by i.p. injection engraft and generate ectopic liver tissues in fat-associated lymphoid clusters (FALCs), which are adipose tissue-embedded, tertiary lymphoid structures localized throughout the peritoneal cavity. The FALC-engrafted hepatocytes formed functional ectopic livers that rescued tyrosinemic mice from liver failure. Consistently, analyses of ectopic and native liver transcriptomes revealed a selective ectopic compensatory gene expression of hepatic function-controlling genes in ectopic livers, implying a regulated functional integration between the two livers. The lack of FALCs in the abdominal cavity of immunodeficient tyrosinemic mice hindered ectopic liver development, whereas the restoration of FALC formation through bone marrow transplantation restored ectopic liver development in these mice. Accordingly, induced abdominal inflammation increased FALC numbers, which improved hepatocyte engraftment and accelerated the recovery of tyrosinemic mice from liver failure. CONCLUSIONS: Abdominal FALCs are essential extrahepatic sites for hepatocyte engraftment after i.p. transplantation and, as such, represent an easy-to-access and expandable niche for ectopic liver regeneration when adequate growth stimulus is present.


Assuntos
Hepatopatias , Falência Hepática , Tecido Adiposo , Animais , Hepatócitos/metabolismo , Fígado/patologia , Hepatopatias/patologia , Falência Hepática/patologia , Regeneração Hepática , Camundongos
2.
Am J Pathol ; 190(1): 252-269, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585070

RESUMO

The mouse lymph node (LN) can provide a niche to grow metanephric kidney to maturity. Here, we show that signaling through the lymphotoxin-ß receptor (LTßR) is critical for kidney organogenesis both in the LN and the omentum. By transplanting kidney rudiments either in the LNs of mice undergoing LTßR antagonist treatment or in the omenta of Ltbr knockout (Ltbr-/-) mice, the host LTßR signals were found to be crucial for obtaining a well-vascularized kidney graft. Indeed, defective LTßR signaling correlated with decreased expression of endothelial and angiogenic markers in kidney grafts as well as structural alterations. Because the number of glomerular endothelial cells expressing the LTßR target nuclear factor κB-inducing kinase (NIK) decreased in the absence of a functional LTßR, it was speculated that an LTßR/NIK axis mediated the angiogenetic signals required for successful ectopic kidney organogenesis, given the established role of NIK in neovascularization. However, the transplantation of kidney rudiments in omenta of Nik-/- mice revealed that NIK is dispensable for ectopic kidney vascular integration and maturation. Finally, defective LTßR signaling impaired compensatory glomerular adaptation to renal mass reduction, indicating that kidney regeneration approaches, besides whole kidney reconstruction, might benefit from the presence of LTßR signals.


Assuntos
Glomérulos Renais/transplante , Tecido Linfoide/citologia , Receptor beta de Linfotoxina/fisiologia , Neovascularização Fisiológica , Organogênese , Animais , Células Endoteliais/citologia , Glomérulos Renais/citologia , Tecido Linfoide/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/fisiologia , Regeneração , Transdução de Sinais , Quinase Induzida por NF-kappaB
3.
Liver Transpl ; 26(12): 1629-1643, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32810371

RESUMO

Orthotopic liver transplantation continues to be the only effective therapy for patients with end-stage liver disease. Unfortunately, many of these patients are not considered transplant candidates, lacking effective therapeutic options that would address both the irreversible progression of their hepatic failure and the control of their portal hypertension. In this prospective study, a swine model was exploited to induce subacute liver failure. Autologous hepatocytes, isolated from the left hepatic lobe, were transplanted into the mesenteric lymph nodes (LNs) by direct cell injection. At 30-60 days after transplantation, hepatocyte engraftment in LNs was successfully identified in all transplanted animals with the degree of ectopic liver mass detected being proportional to the induced native liver injury. These ectopic livers developed within the LNs showed remarkable histologic features of swine hepatic lobules, including the formation of sinusoids and bile ducts. On the basis of our previous tyrosinemic mouse model and the present pig models of induced subacute liver failure, the generation of auxiliary liver tissue using the LNs as hepatocyte engraftment sites represents a potential therapeutic approach to supplement declining hepatic function in the treatment of liver disease.


Assuntos
Transplante de Fígado , Animais , Hepatócitos , Humanos , Fígado/cirurgia , Transplante de Fígado/efeitos adversos , Linfonodos/cirurgia , Camundongos , Estudos Prospectivos , Suínos
4.
Int J Mol Sci ; 20(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013771

RESUMO

5-Fluorouracil (5-FU) remains the gold standard of first-line treatment for colorectal cancer (CRC). Although it may initially debulk the tumor mass, relapses frequently occur, indicating the existence of cancer cells that are therapy-resistant and are capable of refueling tumor growth. To identify mechanisms of drug resistance, CRC stem-like cells were subjected to long-term 5-FU selection using either intermittent treatment regimen with the IC50 drug dose or continuous treatment regimen with escalating drug doses. Parental cancer cells were cultivated in parallel. Real-time PCR arrays and bioinformatic tools were used to investigate gene expression changes. We found the first method selected for cancer cells with more aggressive features. We therefore transplanted these cancer cells or parental cells in mice, and again, found that not only did the 5-FU-selected cancer cells generate more aggressive tumors with respect to their parental counterpart, but they also showed a different gene expression pattern as compared to what we had observed in vitro, with ID1 the top upregulated gene. We propose ID1 as a stemness marker pervasively expressed in secondary lesions emerging after completion of chemotherapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Hepatol ; 68(4): 744-753, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29288124

RESUMO

BACKGROUND & AIMS: Since the first account of the myth of Prometheus, the amazing regenerative capacity of the liver has fascinated researchers because of its enormous medical potential. Liver regeneration is promoted by multiple types of liver cells, including hepatocytes and liver non-parenchymal cells (NPCs), through complex intercellular signaling. However, the mechanism of liver organogenesis, especially the role of adult hepatocytes at ectopic sites, remains unknown. In this study, we demonstrate that hepatocytes alone spurred liver organogenesis to form an organ-sized complex 3D liver that exhibited native liver architecture and functions in the kidneys of mice. METHODS: Isolated hepatocytes were transplanted under the kidney capsule of monocrotaline (MCT) and partial hepatectomy (PHx)-treated mice. To determine the origin of NPCs in neo-livers, hepatocytes were transplanted into MCT/PHx-treated green fluorescent protein transgenic mice or wild-type mice transplanted with bone marrow cells isolated from green fluorescent protein-mice. RESULTS: Hepatocytes engrafted at the subrenal space of mice underwent continuous growth in response to a chronic hepatic injury in the native liver. More than 1.5 years later, whole organ-sized liver tissues with greater mass than those of the injured native liver had formed. Most remarkably, we revealed that at least three types of NPCs with similar phenotypic features to the liver NPCs were recruited from the host tissues including bone marrow. The neo-livers in the kidney exhibited liver-specific functions and architectures, including sinusoidal vascular systems, zonal heterogeneity, and emergence of bile duct cells. Furthermore, the neo-livers successfully rescued the mice with lethal liver injury. CONCLUSION: Our data clearly show that adult hepatocytes play a leading role as organizer cells in liver organogenesis at ectopic sites via NPC recruitment. LAY SUMMARY: The role of adult hepatocytes at ectopic locations has not been clarified. In this study, we demonstrated that engrafted hepatocytes in the kidney proliferated, recruited non-parenchymal cells from host tissues including bone marrow, and finally created an organ-sized, complex liver system that exhibited liver-specific architectures and functions. Our results revealed previously undescribed functions of hepatocytes to direct liver organogenesis through non-parenchymal cell recruitment and organize multiple cell types into a complex 3D liver at ectopic sites. Transcript profiling: Microarray data are deposited in GEO (GEO accession: GSE99141).


Assuntos
Hepatócitos/fisiologia , Rim/citologia , Fígado/embriologia , Organogênese , Animais , Movimento Celular , Proliferação de Células , Hepatócitos/transplante , Regeneração Hepática , Camundongos , Camundongos Endogâmicos C57BL
6.
Xenotransplantation ; 24(2)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28130881

RESUMO

BACKGROUND: Some patients with acute or acute-on-chronic hepatic failure die before a suitable human liver allograft becomes available. Encouraging results have been achieved in such patients by the transplantation of human hepatocyte progenitor cells from fetal liver tissue. The aim of the study was to explore survival of hepatocytes from genetically engineered pigs after direct injection into the spleen and other selected sites in immunosuppressed baboons to monitor the immune response and the metabolic function and survival of the transplanted hepatocytes. METHODS: Baboons (n=3) were recipients of GTKO/hCD46 pig hepatocytes. All three baboons received anti-thymocyte globulin (ATG) induction and tapering methylprednisolone. Baboon 1 received maintenance immunosuppressive therapy with tacrolimus and rapamycin. Baboons 2 and 3 received an anti-CD40mAb/rapamycin-based regimen that prevents sensitization to pig solid organ grafts. The baboons were euthanized 4 or 5 weeks after hepatocyte transplantation. The baboon immune response was monitored by the measurement of anti-non-Gal IgM and IgG antibodies (by flow cytometry) and CFSE-mixed lymphocyte reaction. Monitoring for hepatocyte survival and function was by (i) real-time PCR detection of porcine DNA, (ii) real-time PCR for porcine gene expression, and (iii) pig serum albumin levels (by ELISA). The sites of hepatocyte injection were examined microscopically. RESULTS: Detection of porcine DNA and porcine gene expression was minimal at all sites of hepatocyte injection. Serum levels of porcine albumen were very low-500-1000-fold lower than in baboons with orthotopic pig liver grafts, and approximately 5000-fold lower than in healthy pigs. No hepatocytes or infiltrating immune cells were seen at any of the injection sites. Two baboons (Baboons 1 and 3) demonstrated a significant increase in anti-pig IgM and an even greater increase in IgG, indicating sensitization to pig antigens. DISCUSSION AND CONCLUSIONS: As a result of this disappointing experience, the following points need to be considered. (i) Were the isolated pig hepatocytes functionally viable? (ii) Are pig hepatocytes more immunogenic than pig hearts, kidneys, artery patch grafts, or islets? (iii) Does injection of pig cells (antigens) into the spleen and/or lymph nodes stimulate a greater immune response than when pig tissues are grafted at other sites? (iv) Did the presence of the recipient's intact liver prevent survival and proliferation of pig hepatocytes? (v) Is pig CD47-primate SIRP-α compatibility essential? In conclusion, the transplantation of genetically engineered pig hepatocytes into multiple sites in immunosuppressed baboons was associated with very early graft failure. Considerable further study is required before clinical trials should be undertaken.


Assuntos
Sobrevivência de Enxerto/imunologia , Hepatócitos/imunologia , Transplante Heterólogo , Animais , Animais Geneticamente Modificados , Anticorpos/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Antígenos/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Hepatócitos/transplante , Terapia de Imunossupressão/métodos , Imunossupressores/farmacologia , Papio hamadryas/imunologia , Suínos , Transplante Heterólogo/métodos
7.
Exp Cell Res ; 348(1): 75-86, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27619333

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a major public health concern. Recent data indicate the presence of cancer stem cells (CSC) in many solid tumors, including HNSCC. Here, we assessed the stem cell (SC) characteristics, including cell surface markers, radioresistance, chromosomal instability, and in vivo tumorigenic capacity of CSC isolated from HNSCC patient specimens. We show that spheroid enrichment of CSC from early and short-term HNSCC cell cultures was associated with increased expression of CD44, CD133, SOX2 and BMI1 compared with normal oral epithelial cells. On immunophenotyping, five of 12 SC/CSC markers were homogenously expressed in all tumor cultures, while one of 12 was negative, four of 12 showed variable expression, and two of the 12 were expressed heterogeneously. We showed that irradiated CSCs survived and retained their self-renewal capacity across different ionizing radiation (IR) regimens. Fluorescence in situ hybridization (FISH) analyses of parental and clonally-derived tumor cells revealed different chromosome copy numbers from cell to cell, suggesting the presence of chromosomal instability in HNSCC CSC. Further, our in vitro and in vivo mouse engraftment studies suggest that CD44+/CD66- is a promising, consistent biomarker combination for HNSCC CSC. Overall, our findings add further evidence to the proposed role of HNSCC CSCs in therapeutic resistance.


Assuntos
Carcinoma de Células Escamosas/patologia , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas/patologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Separação Celular , Instabilidade Cromossômica , Células Clonais , Células Alimentadoras/citologia , Feminino , Imunofluorescência , Neoplasias de Cabeça e Pescoço/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço
8.
Br J Clin Pharmacol ; 82(5): 1180-1188, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26609914

RESUMO

The mammalian target of rapamycin (mTOR) pathway is aberrantly activated in many cancer types. As the intricate network of regulatory mechanisms controlling mTOR activity is uncovered, more refined drugs are designed and tested in clinical trials. While first generation mTOR inhibitors have failed to show clinical efficacy due partly to the feedback relief of oncogenetic circuits, newly developed inhibitors show greater promise as anti-cancer agents. An effective drug must defeat the cancer stem cells (CSCs) while sparing the normal stem cells. Due to its opposing role on normal and malignant stem cells, mTOR lends itself very well as a therapeutic target. Indeed, a preferential inhibitory effect on CSCs has already been shown for some mTOR inhibitors. These results provide a compelling rationale for the clinical development of mTOR-targeted therapies.


Assuntos
Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Humanos
9.
Pediatr Nephrol ; 31(10): 1553-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26686504

RESUMO

The ultimate treatment for end-stage renal disease (ESRD) is orthotopic transplantation. However, the demand for kidney transplantation far exceeds the number of available donor organs. While more than 100,000 Americans need a kidney, only 17,000 people receive a kidney transplant each year (National Kidney Foundation's estimations). In recent years, several regenerative medicine/tissue engineering approaches have been exploited to alleviate the kidney shortage crisis. Although these approaches have yielded promising results in experimental animal models, the kidney is a complex organ and translation into the clinical realm has been challenging to date. In this review, we will discuss cell therapy-based approaches for kidney regeneration and whole-kidney tissue engineering strategies, including our innovative approach to regenerate a functional kidney using the lymph node as an in vivo bioreactor.


Assuntos
Rim/crescimento & desenvolvimento , Linfonodos/fisiologia , Regeneração/fisiologia , Medicina Regenerativa/métodos , Animais , Humanos , Nefropatias/terapia , Linfonodos/crescimento & desenvolvimento , Organogênese , Medicina Regenerativa/tendências , Engenharia Tecidual , Alicerces Teciduais
10.
Curr Opin Organ Transplant ; 19(2): 169-74, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24480968

RESUMO

PURPOSE OF REVIEW: This review outlines the concept of cell-based therapy to restore tissue function, and addresses four key points to consider in cell transplantation: source, surveillance, safety, and site. Whereas each point is essential, additional attention should be given to transplantation sites if cell therapy is going to be successful in the clinic. Various ectopic locations are discussed, and the strengths and weaknesses of each are compared as suitable candidates for cell therapy. RECENT FINDINGS: Studies in rodents often demonstrate cell transplantation and engraftment in ectopic sites, with little evidence to suggest why it may also work in humans. For example, transplantation to the subcapsular space of the kidney is often performed in rodents, but has not been a good predictor of clinical success. Recent work has shown that the lymph node may be a good site for transplantation of multiple tissue types, and several reasons are highlighted as to why it should be considered for future studies. SUMMARY: The use of cell-based therapy in the clinic has been hampered by the lack of appropriate sites for transplantation. The lymph node is a promising alternative for cell transplantation, and offers hope for clinical application.


Assuntos
Transplante de Células , Terapia Baseada em Transplante de Células e Tecidos , Especificidade de Órgãos , Transplante de Células-Tronco , Animais , Transplante de Células/métodos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Coristoma , Humanos , Linfonodos/citologia , Organogênese , Medicina Regenerativa
12.
Trends Mol Med ; 29(9): 687-710, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481382

RESUMO

The remarkable anatomical homeostasis exhibited by complex living organisms suggests that they are inherently reprogrammable information-processing systems that offer numerous interfaces to their physiological and anatomical problem-solving capacities. We briefly review data suggesting that the multiscale competency of living forms affords a new path for biomedicine that exploits the innate collective intelligence of tissues and organs. The concept of tissue-level allostatic goal-directedness is already bearing fruit in clinical practice. We sketch a roadmap towards 'somatic psychiatry' by using advances in bioelectricity and behavioral neuroscience to design methods that induce self-repair of structure and function. Relaxing the assumption that cellular control mechanisms are static, exploiting powerful concepts from cybernetics, behavioral science, and developmental biology may spark definitive solutions to current biomedical challenges.


Assuntos
Inteligência , Humanos , Homeostase/fisiologia
13.
Gastroenterology ; 140(2): 656-666.e2, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21070777

RESUMO

BACKGROUND & AIMS: Hepatocyte transplantation is a potential therapeutic approach for liver disease. However, most patients with chronic hepatic damage have cirrhosis and fibrosis, which limit the potential for cell-based therapy of the liver. The development of an ectopic liver as an additional site of hepatic function represents a new approach for patients with end-stage liver disease. We investigated the development and function of liver tissue in lymph nodes in mice with liver failure. METHODS: Hepatocytes were isolated from 8- to 12-week-old mice and transplanted by intraperitoneal injection into 8- to 12-week-old fumarylacetoacetate hydrolase mice (Fah(-/-)), a model of the human liver disease tyrosinemia type I. Survival was monitored and the locations and functions of the engrafted liver cells were determined. RESULTS: Lymph nodes of Fah(-/-) mice were colonized by transplanted hepatocytes; Fah(+) hepatocytes were detected adjacent to the CD45(+) lymphoid cells of the lymphatic system. Ten weeks after transplantation, these mice had substantial improvements in serum levels of transaminases, bilirubin, and amino acids. Homeostatic expansion of donor hepatocytes in lymph nodes rescued the mice from lethal hepatic failure. CONCLUSIONS: Functional ectopic liver tissue in lymph nodes rescues mice from lethal hepatic disease; lymph nodes therefore might be used as sites for hepatocyte transplantation.


Assuntos
Hepatócitos/transplante , Falência Hepática/cirurgia , Linfonodos/fisiologia , Aminoácidos/sangue , Animais , Bilirrubina/sangue , Doença Crônica , Modelos Animais de Doenças , Feminino , Hidrolases/genética , Antígenos Comuns de Leucócito/análise , Falência Hepática/etiologia , Linfócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transaminases/sangue , Tirosinemias/complicações , Tirosinemias/genética , Tirosinemias/cirurgia
14.
Hepatology ; 54(5): 1830-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21793026

RESUMO

UNLABELLED: The identification of resident stem cells in the mouse gallbladder is, to date, unexplored. In addition, the relationship between adult gallbladder stem cells and intrahepatic bile duct (IHBD) cells is not well understood. The aim of this study was to isolate stem cells from an adult mouse gallbladder and determine whether they were unique, compared to IHBD cells. By limiting dilution analyses and index sorts, we found that an EpCAM(+) CD49f(hi) epithelial cell subpopulation from primary gallbladder is enriched in colony-forming cells, compared to EpCAM(+) CD49f(lo) cells. EpCAM(+) CD49f(hi) cells expressed cluster of differentiation (CD)29, CD133, and stem cell antigen-1, but were negative for lineage markers CD31, CD45, and F4/80. Using a novel feeder cell-culture system, we observed long-term (>passage 20) and clonal expansion of the EpCAM(+) CD49f(hi) cells in vitro. In a matrigel differentiation assay, EpCAM(+) CD49f(+) cells expanding in vitro underwent organotypic morphogenesis forming ductular structures and cysts. These structures are similar to, and recapitulate a transport function of, primary gallbladder. EpCAM(+) CD49f(+) cells also engraft into the subcutaneous space of recipient mice. We compared primary gallbladder and IHBD cells by flow cytometry and found phenotypic differences in the expression of CD49f, CD49e, CD81, CD26, CD54, and CD166. In addition, oligonucleotide microarrays showed that the expanded EpCAM(+) CD49f(+) gallbladder cells and IHBD cells exhibit differences related to lipid and drug metabolism. Notable genes that were different are cytochrome P450, glutathione S-transferase, Indian hedgehog, and solute carrier family genes. CONCLUSION: We have isolated an epithelial cell population from primary mouse gallbladder with stem cell characteristics and found it to be unique, compared to IHBD cells.


Assuntos
Células-Tronco Adultas/citologia , Vesícula Biliar/citologia , Nicho de Células-Tronco/fisiologia , Células-Tronco Adultas/metabolismo , Fatores Etários , Animais , Antígenos de Neoplasias/metabolismo , Ductos Biliares Intra-Hepáticos/citologia , Biomarcadores/metabolismo , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/fisiologia , Separação Celular/métodos , Células Cultivadas , Molécula de Adesão da Célula Epitelial , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/genética , Integrina alfa6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
15.
Stem Cells ; 27(3): 612-22, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19056905

RESUMO

Bronchiolar stem cells have been functionally defined in vivo on the basis of their resistance to chemical (naphthalene) injury, their infrequent proliferation relative to other progenitor cell types, and their coexpression of the airway and alveolar secretory cell markers Clara cell secretory protein and pro-surfactant protein C, respectively. Cell surface markers that have previously been used for their prospective isolation included Sca-1 and CD34. Using transgenic animal models associated with stem cell expansion, ablation, and lineage tracing, we demonstrate that CD34(pos) cells do not belong to the airway epithelial lineage and that cell surface Sca-1 immunoreactivity does not distinguish between bronchiolar stem and facultative transit-amplifying (Clara) cell populations. Furthermore, we show that high autofluorescence (AF(high)) is a distinguishing characteristic of Clara cells allowing for the fractionation of AF(low) bronchiolar stem cells. On the basis of these data we show that the defining phenotype of the bronchiolar stem cell is CD45(neg) CD31(neg) CD34(neg) Sca-l(low) AF(low). This refinement in the definition of bronchiolar stem cells provides a critical tool by which to assess functional and molecular distinctions between bronchiolar stem cells and the more abundant pool of facultative transit-amplifying (Clara) cells.


Assuntos
Bronquíolos/citologia , Fluorescência , Imunofenotipagem/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Antígenos CD34/metabolismo , Antígenos Ly/metabolismo , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Antígenos Comuns de Leucócito/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Reação em Cadeia da Polimerase
16.
Mol Ther Methods Clin Dev ; 18: 738-750, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32913881

RESUMO

The effectiveness of cell-based therapies to treat liver failure is often limited by the diseased liver environment. Here, we provide preclinical proof of concept for hepatocyte transplantation into lymph nodes as a cure for liver failure in a large-animal model with hereditary tyrosinemia type 1 (HT1), a metabolic liver disease caused by deficiency of fumarylacetoacetate hydrolase (FAH) enzyme. Autologous porcine hepatocytes were transduced ex vivo with a lentiviral vector carrying the pig Fah gene and transplanted into mesenteric lymph nodes. Hepatocytes showed early (6 h) and durable (8 months) engraftment in lymph nodes, with reproduction of vascular and hepatic microarchitecture. Subsequently, hepatocytes migrated to and repopulated the native diseased liver. The corrected cells generated sufficient liver mass to clinically ameliorate the acute liver failure and HT1 disease as early as 97 days post-transplantation. Integration site analysis defined the corrected hepatocytes in the liver as a subpopulation of hepatocytes from lymph nodes, indicating that the lymph nodes served as a source for healthy hepatocytes to repopulate a diseased liver. Therefore, ectopic transplantation of healthy hepatocytes cures this pig model of liver failure and presents a promising approach for the development of cures for liver disease in patients.

17.
Stem Cells ; 26(1): 292-8, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17962698

RESUMO

This report presents highlights of discussions that focused on the biology of cancer stem cells as conducted at the fifth Annual Meeting of the International Society for Stem Cell Research, held in Cairns, Australia, June 17-20, 2007. The function of adult stem cells is believed to depend on their niches, that is, the microenvironment in which these stem cells reside. A similar concept applies to understanding the development of cancer, as it is becoming increasingly clear that only a small subset of cancer cell populations is capable of initiating/sustaining tumor formation. These tumorigenic cells, commonly referred to as cancer stem cells, also appear to reside in particular niches, and they bear the known, albeit dysfunctional, stem cell characteristics of self-renewal and differentiation. Dysregulation of stem cell niches is thought to contribute to tumorigenesis by affecting the complex network of signaling interactions that occur between stem cells and their neighboring cells, thus imbalancing the physiological controls on self-renewal and differentiation processes. This hypothesis was widely explored at the conference to shed new light on the mechanisms of tumor origin and progression and to unveil novel antitumor therapeutic approaches.


Assuntos
Células-Tronco Adultas , Células-Tronco Neoplásicas , Animais , Epigênese Genética , Humanos
18.
J Tissue Eng Regen Med ; 13(9): 1724-1731, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31267702

RESUMO

Stem cell-derived organoids are emerging as sophisticated models for studying development and disease and as potential sources for developing organ substitutes. Unfortunately, although organoids containing renal structures have been generated from mouse and human pluripotent stem cells, there are still critical unanswered questions that are difficult to attain via in vitro systems, including whether these nonvascularized organoids have a stable and physiologically relevant phenotype or whether a suitable transplantation site for long-term in vivo studies can be identified. Even orthotopic engraftment of organoid cultures in the adult does not provide an environment conducive to vascularization and functional differentiation. Previously, we showed that the lymph node offers an alternative transplantation site where mouse metanephroi can differentiate into mature renal structures with excretory, homeostatic, and endocrine functions. Here, we show that the lymph node lends itself well as a niche to also grow human primary kidney rudiments and can additionally be viewed as a platform to interrogate emerging renal organoid cultures. Our study has a wide-ranging impact for tissue engineering approaches to rebuild functional tissues in vivo including-but not limited to-the kidney.


Assuntos
Linfonodos/crescimento & desenvolvimento , Modelos Biológicos , Néfrons/citologia , Néfrons/crescimento & desenvolvimento , Organogênese , Células-Tronco/citologia , Animais , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus
19.
Cell Transplant ; 25(6): 1007-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26160801

RESUMO

Kidney disease poses a global challenge. Stem cell therapy may offer an alternative therapeutic approach to kidney transplantation, which is often hampered by the limited supply of donor organs. While specific surface antigen markers have yet to be identified for the analysis and purification of kidney stem/progenitor cells for research or clinical use, the reprogramming of somatic cells to pluripotent cells and their differentiation into the various kidney lineages might represent a valuable strategy to create a renewable cell source for regenerative purposes. In this review, we first provide an overview of kidney development and explore current knowledge about the role of extra- and intrarenal cells in kidney repair and organogenesis. We then discuss recent advances in the 1) differentiation of rodent and human embryonic stem cells (ESCs) into renal lineages; 2) generation of induced pluripotent stem cells (iPSCs) from renal or nonrenal (kidney patient-derived) adult cells; 3) differentiation of iPSCs into renal lineages; and 4) direct transcriptional reprogramming of adult renal cells into kidney progenitor cells. Finally, we describe the lymph node as a potential three-dimensional (3D) in vivo environment for kidney organogenesis from pluripotent stem cells.


Assuntos
Rim/citologia , Linfonodos/citologia , Células-Tronco Pluripotentes/citologia , Nicho de Células-Tronco , Animais , Reprogramação Celular/genética , Humanos , Rim/embriologia , Organogênese/genética , Nicho de Células-Tronco/genética
20.
Curr Pathobiol Rep ; 4(3): 77-85, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28979828

RESUMO

In recent years, functional three-dimensional (3D) tissue generation in vitro has been significantly advanced by tissue-engineering methods, achieving better reproduction of complex native organs compared to conventional culture systems. This review will discuss traditional 3D cell culture techniques as well as newly developed technology platforms. These recent techniques provide new possibilities in the creation of human body parts and provide more accurate predictions of tissue response to drug and chemical challenges. Given the rapid advancement in the human induced pluripotent stem cell (iPSC) field, these platforms also hold great promise in the development of patient-specific, transplantable tissues and organs on demand.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA