Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2027): 20240538, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39013422

RESUMO

Eusocial insects belong to distinct queen and worker castes, which, in turn, can be divided into several morphologically specialized castes of workers. Caste determination typically occurs by differential nutrition of developing larvae. We present a model for the coevolution of larval signalling and worker task allocation-both modelled by flexible smooth reaction norms-to investigate the evolution of caste determination mechanisms and worker polymorphism. In our model, larvae evolve to signal their nutritional state to workers. The workers evolve to allocate time to foraging for resources versus feeding the brood, conditional on the larval signals and their body size. Worker polymorphism evolves under accelerating foraging returns of increasing body size, which causes selection to favour large foraging and small nursing workers. Worker castes emerge because larvae evolve to amplify their signals after obtaining some food, which causes them to receive more food, while the other larvae remain unfed. This leads to symmetry-breaking among the larvae, which are either well-nourished or malnourished, thus emerging as small or large workers. Our model demonstrates the evolution of nutrition-dependent caste determination and worker polymorphism by a self-reinforcement mechanism that evolves from the interplay of larval signalling and worker response to the signals.


Assuntos
Evolução Biológica , Larva , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Comportamento Social , Insetos/fisiologia , Insetos/crescimento & desenvolvimento , Comunicação Animal , Modelos Biológicos , Tamanho Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA