RESUMO
The feasibility of X-ray absorption fine-structure (XAFS) experiments of ultra-dilute metalloproteins under in vivo conditions (T = 300â K, pH = 7) at the BL-9 bending-magnet beamline (Indus-2) is reported, using as an example analogous synthetic Zn (0.1â mM) M1dr solution. The (Zn K-edge) XAFS of M1dr solution was measured with a four-element silicon drift detector. The first-shell fit was tested and found to be robust against statistical noise, generating reliable nearest-neighbor bond results. The results are found to be invariant between physiological and non-physiological conditions, which confirms the robust coordination chemistry of Zn with important biological implications. The scope of improving spectral quality for accommodation of higher-shell analysis is addressed.
Assuntos
Metaloproteínas , Síncrotrons , Metaloproteínas/química , Raios X , Radiografia , ÍndiaRESUMO
The static focusing optics of the existing energy-dispersive XAFS beamline BL-8 have been advantageously exploited to initiate diamond anvil cell based high-pressure XANES experiments at the Indus-2 synchrotron facility, India. In the framework of the limited photon statistics with the 2.5â GeV bending-magnet source, limited focusing optics and 4â mm-thick diamond windows of the sample cell, a (non-trivial) beamline alignment method for maximizing photon statistics at the sample position has been designed. Key strategies include the selection of a high X-ray energy edge, the truncation of the smallest achievable focal spot size to target size with a slit and optimization of the horizontal slit position for transmission of the desired energy band. A motor-scanning program for precise sample centering has been developed. These details are presented with rationalization for every step. With these strategies, Nb K-edge XANES spectra for Nb2O5 under high pressure (0-16.9â GPa) have been generated, reproducing the reported spectra for Nb2O5 under ambient conditions and high pressure. These first HPXANES results are reported in this paper. The scope of extending good data quality to the EXAFS range in the future is addressed. This work should inspire and guide future high-pressure XAFS experiments with comparable infrastructure.
RESUMO
XANES- and EXAFS-based analysis of the Ayurvedic Hg-based nano-drug Rasasindura has been performed to seek evidence of its non-toxicity. Rasasindura is determined to be composed of single-phase α-HgS nanoparticles (size â¼24â nm), free of Hg(0) or organic molecules; its structure is determined to be robust (<3% defects). The non-existence of Hg(0) implies the absence of Hg-based toxicity and establishes that chemical form, rather than content of heavy metals, is the correct parameter for evaluating the toxicity in these drugs. The stable α-HgS form (strong Hg-S covalent bond and robust particle character) ensures the integrity of the drug during delivery and prevention of its reduction to Hg(0) within the human body. Further, these comparative studies establish that structural parameters (size dispersion, coordination configuration) are better controlled in Rasasindura. This places the Ayurvedic synthesis method on par with contemporary techniques of nanoparticle synthesis.
Assuntos
Compostos de Mercúrio/análise , Compostos de Mercúrio/química , Mercúrio/análise , Espectroscopia por Absorção de Raios X/métodos , Disponibilidade Biológica , Cristalização , Composição de Medicamentos , Ayurveda , Compostos de Mercúrio/síntese química , Compostos de Mercúrio/toxicidade , Nanopartículas , Tamanho da Partícula , Pós , SolubilidadeRESUMO
Short-range order has been investigated in Zr69.5Cu12Ni11Al7.5 and Zr41.5Ti41.5Ni17 metallic glasses using X-ray absorption spectroscopy and ab initio molecular dynamics simulations. While both of these alloys are good glass formers, there is a difference in their glass-forming abilities (Zr41.5Ti41.5Ni17 > Zr69.5Cu12Ni11Al7.5). This difference is explained by inciting the relative importance of strong chemical order, icosahedral content, cluster symmetry and configuration diversity.
RESUMO
Structure of metallic glasses fascinates as the generic amorphous structural template for ubiquitous systems. Its specification necessitates determination of the complete hierarchical structure, starting from short-range-order (SRO) â medium-range-order (MRO) â bulk structure and free volume (FV) distribution. This link has largely remained elusive since previous investigations adopted one-technique-at-a-time approach, focusing on limited aspects of any one domain. Reconstruction of structure from experimental data inversion is non-unique for many of these techniques. As a result, complete and precise structural understanding of glass has not emerged yet. In this work, we demonstrate the first experimental pathway for reconstruction of the integrated structure, for Zr 67 Ni 33 and Zr 52 Ti 6 Al 10 Cu 18 Ni 14 glasses. Our strategy engages diverse (× 7) multi-scale techniques [XAFS, 3D-APT, ABED/NBED, FEM, XRD, PAS, FHREM] on the same glass. This strategy complemented mutual limitations of techniques and corroborated common parameters to generate complete, self-consistent and precise parameters. Further, MRO domain size and inter-void separation were correlated to identify the presence of FV at MRO boundaries. This enabled the first experimental reconstruction of hierarchical subset: SRO â MRO â FV â bulk structure. The first ever image of intermediate region between MRO domains emerged from this link. We clarify that determination of all subsets is not our objective; the essence and novelty of this work lies in directing the pathway towards finite solution, in the most logical and unambiguous way.
RESUMO
In this work nanoclusters formed in a Pt/Ni/C multi-trilayer by the ion-irradiated method of synthesis are characterized. In particular, an attempt to understand the role of interfaces in the synthesis is made. With this objective, ion-irradiation-induced structural changes in a Pt/Ni/C multi-trilayer using X-ray absorption spectroscopy (at the Ni K-edge) in conjunction with the X-ray standing-wave technique are investigated. The XANES analysis identifies chemical binding at pristine Ni/C and Ni/Pt interfaces, in contrast with physical adsorption at the Pt/C interface. The chemical nature of the interfaces determines their relative stability with respect to irradiation and controls the extent of metallic diffusion. The most interesting structural change, upon irradiation, is the disruption of the Pt/C interface and subsequent migration of Pt atoms towards pre-diffused Ni atoms within the C layer, leading to the formation of Ni-centered Ni-Pt bimetallic nanoclusters (with Ni:Pt = 60:40). These clusters are highly disordered beyond their nearest neighbor and find wide-scale applications as, for example, magnetic devices etc. The implications of these findings on the design goals are discussed.
RESUMO
The inclusion of the contribution of Jahn-Teller distortion of MnO(6) units, in addition to double-exchange, has been largely successful in explaining the magneto-transport behavior of manganites. However, our recent experiments on La(0.5)Ca(0.5)MnO(3) demonstrated the limitation of these factors in explaining the radical difference between the magneto-transport properties of bulk and nanocrystalline forms. While bulk La(0.5)Ca(0.5)MnO(3) exhibits insulator character (4-300 K) and an anti-ferromagnetic-ferromagnetic transition at 200 K, the nanocrystalline form stabilizes in a metallic ferromagnetic phase (4-300 K). This is counter-intuitive since large Jahn-Teller distortion, which promotes anti-ferromagnetism or insulator character, exists in the nanocrystals too (as indicated by x-ray diffraction results). In this work, we resolve this paradox by considering the role of structural disorder. Employing x-ray absorption spectroscopy, we establish that the disorder in inter-octahedral coupling is enhanced by 57% in the nanocrystals, as the octahedral units are randomly oriented with respect to each other. This orientational disorder promotes metallic ferromagnetism by destroying the stringent orbital ordering that is needed for anti-ferromagnetism and the co-operative nature of the orbital order.
RESUMO
Structural transformations at the TiO2Pt and TiO2Ir interfaces during UV-irradiation have been probed by X-ray absorption spectroscopy. Oxidation by the photogenerated holes results in the intercalation of Pt and Ir into the Titania matrix. The structural transformations observed with Pt and Ir nanoparticles anchored on TiO2 is different than the clustering of gold atoms observed in the TiO2/Au system. Implications of such structural transformations on the photocatalytic activity of semiconductor photocatalyts are discussed.