Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 367: 122055, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111008

RESUMO

With the development of desertification in the Qinghai-Tibet Plateau (QTP), aeolian sand becomes the remarkable local factor affecting the thermal state of permafrost along the Qinghai-Tibet Engineering Corridor (QTEC). In this study, a model experiment was conducted to analyze the impact of thickness and water content of aeolian sand on its thermal effect, and a hydro-thermo-vapor coupling model of frozen soil was carried out to reveal the heat transfer mechanism of the aeolian sand layer (ASL) with different thicknesses and its hydrothermal effect on permafrost. The results indicate that: (1) ASL with the thickness larger than 80 cm has the property of converting precipitation into soil water. The thicker the ASL, the more precipitation infiltrates and accumulates in the soil layer. (2) The cooling effect of ASL on permafrost results from the lower net surface radiation, causing the annual average surface heat flux shifting from heat inflow to heat outflow. The warming effect of ASL on permafrost results from the increasing convective heat accompanying the infiltrated precipitation. (3) As the ASL thickens, the thermal effect of ASL on permafrost gradually shifts from the cooling effect dominated by heat radiation and heat conduction to the warming effect dominated by precipitation infiltration and heat convection. The warming effect of thick ASL on permafrost requires a certain amount of years to manifest, and the critical thickness is suggested to be larger than 120 cm.


Assuntos
Pergelissolo , Tibet , Solo/química , Temperatura Alta
2.
J Am Chem Soc ; 142(6): 2948-2955, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31961673

RESUMO

Transition metal dichalcogenides (TMDs) have become a playground for exploring rich physical phenomena like superconductivity and charge-density-waves (CDW). Here, we report the synthesis of the atom-thin TaSe2 with a rare 3R phase and enhanced superconductivity. The 3R phase is achieved by an ambient pressure chemical vapor deposition (CVD) strategy and confirmed by the high-resolution aberration-corrected STEM. Low-temperature transport data reveal an enhanced superconducting transition temperature (Tc) of 1.6 K in the 3R-TaSe2, which undoubtedly breaks the traditional perception of TaSe2 crystal as a material with Tc close to 0 K. This work demonstrates the strength of ambient pressure CVD in the exploration of crystal polymorphism, highlights a decisive role of layer stacking order in the superconducting transition, and provides fresh insights on manipulating crystal structures to gain access to enhanced Tc.

3.
Nat Commun ; 15(1): 5762, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982091

RESUMO

Icing plays an important role in various physical-chemical process. Although the formation of two-dimensional ice requires nanoscale confinement, two-dimensional bilayer ice in coexistence with three-dimensional ice without confinement remains poorly understood. Here, a critical value of a surface energy parameter is identified to characterize the liquid-solid interface interaction, above which two-dimensional and three-dimensional coexisting ice can surprisingly form on the surface. The two-dimensional ice growth mechanisms could be revealed by capturing the growth and merged of the metastable edge structures. The phase diagram about temperature and pressure vs energy parameters is predicted to distinguish liquid water, two-dimensional ice and three-dimensional ice. Furthermore, the deicing characteristics of coexisting ice demonstrate that the ice adhesion strength is linearly related to the ratio of ice-surface interaction energy to ice temperature. In addition, for gas-solid phase transition, the phase diagram about temperature and energy parameters is predicted to distinguish gas, liquid water, two-dimensional ice and three-dimensional ice. This work gives a perspective for studying the singular structure and dynamics of ice in nanoscale and provides a guide for future experimental realization of the coexisting ice.

4.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234460

RESUMO

In this work, Cu-substituted MgAl2O4 ceramics were prepared via solid-state reaction. The crystal structure, cation distribution, and microwave dielectric properties of Mg1-xCuxAl2O4 ceramics were investigated. Cu2+ entered the MgAl2O4 lattice and formed a spinel structure. The substitution of Cu2+ ions for Mg2+ ions contributed to Al3+ ions preferential occupation of the octahedron and changed the degree of inversion. The quality factor (Qf) value, which is correlated with the degree of inversion, increased to a maximum value at x = 0.04 and then decreased. Ionic polarizability and relative density affected the dielectric constant (εr) value. The temperature coefficient of the resonant frequency (τf) value, which was dominated by the total bond energy, generally shifted to the positive direction. Satisfactory microwave dielectric properties were achieved in x = 0.04 and sintered at 1550 °C: εr = 8.28, Qf = 72,800 GHz, and τf = -59 ppm/°C. The Mg1-xCuxAl2O4 solid solution, possessing good performance, has potential for application in the field of modern telecommunication technology.

5.
Sci Total Environ ; 670: 1190-1203, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31018435

RESUMO

Hydro-thermal properties of permafrost and its distribution are sensitive to climate changes and human activities. Accurate and reasonable prediction on aforementioned information is important for eco-environment construction and vital infrastructures development. To model the current and future states of permafrost, it is a key challenge to effectively determine the upper hydro-thermal boundary conditions for permafrost models under changing climate and different underlying surfaces at proper spatial and temporal scales. An approach, combined regional climate downscaling method with model output statistics method, was developed to produce a time series of air temperature, surface temperatures, and surface unfrozen water contents for different underlying surfaces. It provided various climate and surface parameters at a spatial scale on the order of 102 m2 for engineering designs, which was used to predict boundary conditions under possible climate scenarios. The predicted and simulated models were calibrated and validated by the monitored data at an experimental site in Chumar, China, close to the Qinghai-Tibet Railway and the Qinghai-Tibet Highway. Results show that the multiple linear regression model (MLRM) can predict the current states and future changes of upper hydro-thermal boundary conditions for permafrost while the original states of natural surface are modified by natural or human factors on the condition of complicated climatic and complex topography regions. The statistical regression model (SRM) based on the outputs of regional climate model (RCM) and MLRM provides a simple method for the convenience of numerical calculation. These results also indicate the possible applications to other areas and situations.

6.
Sci Rep ; 5: 15152, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26468777

RESUMO

Previous research has shown that the temperature of underlying permafrost decreases after the ground surface is covered with sand. No significant conclusions have yet been drawn that explain why this happens, because the heat transfer mechanism effects of the sand layer on the underlying permafrost remain unclear. These mechanisms were studied in the present work. We found that the upward shortwave radiation flux of the Qinghai-Tibet Plateau ground surface with a sand layer covering was higher than that of the surface without sand; thus, the atmospheric heat reflected by the sand layer is greater than that reflected by the surface without sand. Therefore, the net radiation of the surface with the sand layer is lower than that of the surface without sand, which reduces the heat available to warm the sand layer. Because sand is both a porous medium and a weak pervious conductor with poor heat conductivity, less heat is conducted through the sand layer to the underground permafrost than in soil without the sand deposition layer. This phenomenon results in a decrease in the ground temperature of the permafrost under the sand layer, which plays a key role in protecting the permafrost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA