Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39117360

RESUMO

Understanding the evolutionary potential of mutations in gene regulatory networks is essential to furthering the study of evolution and development. However, in multicellular systems, genetic manipulation of regulatory networks in a targeted and high-throughput way remains challenging. In this study, we designed TF-High-Evolutionary (HighEvo), a transcription factor (TF) fused with a base editor (activation-induced deaminase, AID), to continuously induce germ-line mutations at TF binding sites across regulatory networks in Drosophila. Populations of flies expressing TF-HighEvo in their germlines accumulated mutations at rates an order of magnitude higher than natural populations. Importantly, these mutations accumulated around the targeted TF binding sites across the genome, leading to distinct morphological phenotypes consistent with the developmental roles of the tagged TFs. As such, this TF-HighEvo method allows the interrogation of the mutational space of gene regulatory networks at scale and can serve as a powerful reagent for experimental evolution and genetic screens focused on the regulatory genome.

2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364113

RESUMO

Evolutionary analyses have estimated that ∼60% of nucleotides in intergenic regions of the Drosophila melanogaster genome are functionally relevant, suggesting that regulatory information may be encoded more densely in intergenic regions than has been revealed by most functional dissections of regulatory DNA. Here, we approached this issue through a functional dissection of the regulatory region of the gene shavenbaby (svb). Most of the ∼90 kb of this large regulatory region is highly conserved in the genus Drosophila, though characterized enhancers occupy a small fraction of this region. By analyzing the regulation of svb in different contexts of Drosophila development, we found that the regulatory information that drives svb expression in the abdominal pupal epidermis is organized in a different way than the elements that drive svb expression in the embryonic epidermis. While in the embryonic epidermis svb is activated by compact enhancers separated by large inactive DNA regions, svb expression in the pupal epidermis is driven by regulatory information distributed over broader regions of svb cis-regulatory DNA. In the same vein, we observed that other developmental genes also display a dense distribution of putative regulatory elements in their regulatory regions. Furthermore, we found that a large percentage of conserved noncoding DNA of the Drosophila genome is contained within regions of open chromatin. These results suggest that part of the evolutionary constraint on noncoding DNA of Drosophila is explained by the density of regulatory information, which may be greater than previously appreciated.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , DNA , DNA Intergênico/genética , DNA Intergênico/metabolismo , Elementos Facilitadores Genéticos
3.
Trends Genet ; 35(6): 423-433, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31005339

RESUMO

The current paradigm in the field of gene regulation postulates that regulatory information for generating gene expression is organized into modules (enhancers), each containing the information for driving gene expression in a single spatiotemporal context. This modular organization is thought to facilitate the evolution of gene expression by minimizing pleiotropic effects. Here we review recent studies that provide evidence of quite the opposite: (i) enhancers can function in multiple developmental contexts, implying that enhancers can be pleiotropic, (ii) transcription factor binding sites within pleiotropic enhancers are reused in different contexts, and (iii) pleiotropy impacts the structure and evolution of enhancers. Altogether, this evidence suggests that enhancer pleiotropy is pervasive in animal genomes, challenging the commonly held view of modularity.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Animais , Sítios de Ligação , Evolução Molecular , Loci Gênicos , Genoma , Especificidade de Órgãos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/metabolismo
4.
Genome Biol Evol ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35552697

RESUMO

Enhancers are regulatory elements of genomes that determine spatio-temporal patterns of gene expression. The human genome contains a vast number of enhancers, which largely outnumber protein-coding genes. Historically, enhancers have been regarded as highly tissue-specific. However, recent evidence has demonstrated that many enhancers are pleiotropic, with activity in multiple developmental contexts. Yet, the extent and impact of pleiotropy remain largely unexplored. In this study we analyzed active enhancers across human organs based on the analysis of both eRNA transcription (FANTOM5 consortium data sets) and chromatin architecture (ENCODE consortium data sets). We show that pleiotropic enhancers are pervasive in the human genome and that most enhancers active in a particular organ are also active in other organs. In addition, our analysis suggests that the proportion of context-specific enhancers of a given organ is explained, at least in part, by the proportion of context-specific genes in that same organ. The notion that such a high proportion of human enhancers can be pleiotropic suggests that small regions of regulatory DNA contain abundant regulatory information and that these regions evolve under important evolutionary constraints.


Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , Evolução Biológica , Cromatina/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA