Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982794

RESUMO

Novel treatment strategies are emerging for rare, genetic diseases, resulting in clinical trials that require adequate biomarkers for the assessment of the treatment effect. For enzyme defects, biomarkers that can be assessed from patient serum, such as enzyme activity, are highly useful, but the activity assays need to be properly validated to ensure a precise, quantitative measurement. Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by the deficiency of the lysosomal hydrolase aspartylglucosaminidase (AGA). We have here established and validated a fluorometric AGA activity assay for human serum samples from healthy donors and AGU patients. We show that the validated AGA activity assay is suitable for the assessment of AGA activity in the serum of healthy donors and AGU patients, and it can be used for diagnostics of AGU and, potentially, for following a treatment effect.


Assuntos
Aspartilglucosaminúria , Aspartilglucosilaminase , Doenças por Armazenamento dos Lisossomos , Humanos , Aspartilglucosilaminase/genética , Aspartilglucosaminúria/genética , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos
2.
J Inherit Metab Dis ; 43(2): 318-325, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31415096

RESUMO

Aspartylglucosaminuria (AGU) is a rare, recessively inherited lysosomal disease with relatively high prevalence in Finnish population. This progressive disease has a vast impact on patient's cognition and physical health, leading to intellectual disability and shorter life expectancy. Cognitive functions of 21 7- to 14-year-old children with AGU were studied cross-sectionally using Wechsler's Intelligence Scale for Children IV and the results were compared with a standardized Finnish sample. In addition to overall cognitive performance, abilities in discrete cognitive domains, including verbal comprehension, perceptual reasoning, working memory, and processing speed, were examined. The results showed that despite the very low overall level of cognitive performance, there were notable differences between individuals. All those children whose performance was closer to their own age level were 7 to 10 years old. Processing speed appeared more compromised, as compared with verbal comprehension. Furthermore, examining the subtest raw scores, there were no significant positive correlations between age and subtest scores, suggesting that the developmental level of AGU children could be rather stable throughout ages 7 to 14. This study gives insight to the severe nature of AGU disease. Since younger children performed better compared to their age norms than older children, the results raise a question whether the highest peak in cognitive functions is reached at an earlier age than previously thought.


Assuntos
Aspartilglucosaminúria/psicologia , Disfunção Cognitiva/diagnóstico , Deficiência Intelectual/diagnóstico , Adolescente , Criança , Cognição , Disfunção Cognitiva/etiologia , Feminino , Finlândia , Humanos , Deficiência Intelectual/etiologia , Masculino , Escalas de Wechsler
3.
Dev Med Child Neurol ; 59(8): 815-821, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28542837

RESUMO

AIM: To characterize the phenotypic profile of a cohort of children affected with CLN5, a rare form of neuronal ceroid-lipofuscinosis (NCL), and to trace the features of the natural history of the disease. METHOD: Records of 15 children (nine males, six females) were obtained from the data sets of the DEM-CHILD International NCL Registry. Disease progression was measured by rating six functional domains at different time points along the disease course. All patients underwent mutation analysis of the CLN5 gene and ultrastructural investigations of peripheral tissues. Expression of the gene product, pCLN5, was characterized in vitro in six patients. RESULTS: Disease onset was at 2 to 7 years 6 months of age: impaired learning and cognition were the most common early symptoms. Seizures occurred relatively late (median age 8y) and were the presenting symptoms in two children. Nine mutations were detected in 30 alleles, including six mutations predicting a truncated protein. Mixed cytosomes were observed by electron microscopy. Differences of disease progression were observed in two groups of patients and could be related to their genetic profile. INTERPRETATION: Clinical features in a multicentre cohort of patients with CLN5 confirm that cognitive difficulties are early clinical markers of this condition. Severe mutations were associated with a more rapid decline of neurological function.


Assuntos
Disfunção Cognitiva/fisiopatologia , Progressão da Doença , Deficiências da Aprendizagem/fisiopatologia , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais , Sistema de Registros , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Disfunção Cognitiva/etiologia , Estudos de Coortes , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Deficiências da Aprendizagem/etiologia , Proteínas de Membrana Lisossomal , Masculino , Limitação da Mobilidade , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Lipofuscinoses Ceroides Neuronais/fisiopatologia , Fenótipo , Adulto Jovem
4.
Brain Sci ; 12(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36358448

RESUMO

Magnetic resonance (MR) imaging data can be used to develop computer-assisted diagnostic tools for neurodegenerative diseases such as aspartylglucosaminuria (AGU) and other lysosomal storage disorders. MR images contain features that are suitable for the classification and differentiation of affected individuals from healthy persons. Here, comparisons were made between MRI features extracted from different types of magnetic resonance images. Random forest classifiers were trained to classify AGU patients (n = 22) and healthy controls (n = 24) using volumetric features extracted from T1-weighted MR images, the zone variance of gray level size zone matrix (GLSZM) calculated from magnitude susceptibility-weighted MR images, and the caudate-thalamus intensity ratio computed from T2-weighted MR images. The leave-one-out cross-validation and area under the receiver operating characteristic curve were used to compare different models. The left-right-averaged, normalized volumes of the 25 nuclei of the thalamus and the zone variance of the thalamus demonstrated equal and excellent performance as classifier features for binary organization between AGU patients and healthy controls. Our findings show that texture-based features of susceptibility-weighted images and thalamic volumes can differentiate AGU patients from healthy controls with a very low error rate.

5.
Dis Model Mech ; 15(10)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36285626

RESUMO

Isolated populations have been valuable for the discovery of rare monogenic diseases and their causative genetic variants. Finnish disease heritage (FDH) is an example of a group of hereditary monogenic disorders caused by single major, usually autosomal-recessive, variants enriched in the population due to several past genetic drift events. Interestingly, distinct subpopulations have remained in Finland and have maintained their unique genetic repertoire. Thus, FDH diseases have persisted, facilitating vigorous research on the underlying molecular mechanisms and development of treatment options. This Review summarizes the current status of FDH, including the most recently discovered FDH disorders, and introduces a set of other recently identified diseases that share common features with the traditional FDH diseases. The Review also discusses a new era for population-based studies, which combine various forms of big data to identify novel genotype-phenotype associations behind more complex conditions, as exemplified here by the FinnGen project. In addition to the pathogenic variants with an unequivocal causative role in the disease phenotype, several risk alleles that correlate with certain phenotypic features have been identified among the Finns, further emphasizing the broad value of studying genetically isolated populations.


Assuntos
Pesquisa Translacional Biomédica , Finlândia/epidemiologia , Fenótipo
6.
J Child Neurol ; 36(5): 403-414, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33439067

RESUMO

Aspartylglucosaminuria (AGU) is a recessively inherited neurodegenerative lysosomal storage disease characterized by progressive intellectual disability, skeletal abnormalities, connective tissue overgrowth, gait disturbance, and seizures followed by premature death. AGU is caused by pathogenic variants in the aspartylglucosaminidase (AGA) gene, leading to glycoasparagine accumulation and cellular dysfunction. Although more prevalent in the Finnish population, more than 30 AGA variants have been identified worldwide. Owing to its rarity, AGU may be largely underdiagnosed. Recognition of the following early clinical features may aid in AGU diagnosis: developmental delays, hyperactivity, early growth spurt, inguinal and abdominal hernias, clumsiness, characteristic facial features, recurring upper respiratory and ear infections, tonsillectomy, multiple sets of tympanostomy tube placement, and sleep problems. Although no curative therapies currently exist, early diagnosis may provide benefit through the provision of anticipatory guidance, management of expectations, early interventions, and prophylaxis; it will also be crucial for increased clinical benefits of future AGU disease-modifying therapies.


Assuntos
Aspartilglucosaminúria/diagnóstico , Aspartilglucosaminúria/fisiopatologia , Aspartilglucosaminúria/terapia , Humanos
7.
Pediatr Neurol ; 120: 38-51, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34000449

RESUMO

BACKGROUND: CLN1 disease (neuronal ceroid lipofuscinosis type 1) is a rare, genetic, neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase 1 (PPT1) enzyme deficiency. Clinical features include developmental delay, psychomotor regression, seizures, ataxia, movement disorders, visual impairment, and early death. In general, the later the age at symptom onset, the more protracted the disease course. We sought to evaluate current evidence and to develop expert practice consensus to support clinicians who have not previously encountered patients with this rare disease. METHODS: We searched the literature for guidelines and evidence to support clinical practice recommendations. We surveyed CLN1 disease experts and caregivers regarding their experiences and recommendations, and a meeting of experts was conducted to ascertain points of consensus and clinical practice differences. RESULTS: We found a limited evidence base for treatment and no clinical management guidelines specific to CLN1 disease. Fifteen CLN1 disease experts and 39 caregivers responded to the surveys, and 14 experts met to develop consensus-based recommendations. The resulting management recommendations are uniquely informed by family perspectives, due to the inclusion of caregiver and advocate perspectives. A family-centered approach is supported, and individualized, multidisciplinary care is emphasized in the recommendations. Ascertainment of the specific CLN1 disease phenotype (infantile-, late infantile-, juvenile-, or adult-onset) is of key importance in informing the anticipated clinical course, prognosis, and care needs. Goals and strategies should be periodically reevaluated and adapted to patients' current needs, with a primary aim of optimizing patient and family quality of life.


Assuntos
Consenso , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/terapia , Guias de Prática Clínica como Assunto/normas , Adolescente , Cuidadores , Criança , Pré-Escolar , Progressão da Doença , Humanos , Lactente , Proteínas de Membrana , Cuidados Paliativos , Fenótipo , Doenças Raras , Participação dos Interessados , Tioléster Hidrolases
8.
Brain Sci ; 10(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992453

RESUMO

Aspartylglucosaminuria (AGU) is a rare lysosomal storage disorder causing developmental delay, intellectual disability, and eventual death. A distinct feature in AGU is iron accumulation within the thalamus. Our aim is to demonstrate that susceptibility-weighted images (SWI) could be used as an MRI biomarker to evaluate the response within the AGU population to newly evolving treatments. SWI from 16 patients with AGU and 16 age-matched controls were used in the analysis. Thalamic volume with an iron accumulation was identified using a permutation test. Group differences were investigated for both the complete thalamus and the iron accumulation regions. Group-wise age correlation within these volumes were assessed with analysis of variance and multivariate regression. We found a statistically significant and large difference (p-value = 0.01, Cohen's D = 0.97) for the whole thalamus comparison and an even greater difference in the iron accumulation regions (p-value < 0.01, Cohen's D = 3.52). Furthermore, we found strong evidence for iron accumulation as a linear function of age with R2 = 0.65 only for AGU. The statistical analysis of SWI provides tools for assessing the degree of iron accumulation. This method could be used to study the response to treatments, in that a successful treatment would be expected to result in a decline in iron accumulation.

9.
J Gene Med ; 8(6): 699-706, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16518877

RESUMO

BACKGROUND: Aspartylglucosaminuria (AGU) is a lysosomal storage disease with severe neurodegenerative clinical features resulting from the deficiency of lysosomal aspartylglucosaminidase (AGA). The AGU knockout mouse is a good model to test different therapy strategies, as it mimics well the human pathogenesis of the disease exhibiting storage vacuoles in all tissues. In this study we investigated the efficiency of nonviral promoters in adenovirus-mediated gene therapy. METHODS: The deficient corrective enzyme, AGA, was expressed using two tissue-specific promoters, neuron-specific enolase (NSE), astrocyte-specific (GFAP) and the endogenous AGA promoter. An intrastriatal injection site was chosen due to its wide connections in the central nervous system (CNS). The expression of AGA was analyzed 1 week, 2 weeks, 4 weeks, 2 months and 4 months after the virus injection by lysosomal AGA-specific immunostaining. A correction of the lysosomal storage in the brain of treated mice was also studied using toluidine blue stained thin sections. RESULTS: The overexpressed AGA enzyme was detected in addition to the injection site, also in the ipsilateral parietal cortex indicating migration of AGA in the brain tissue. Duration of AGA expression was markedly longer with all the viruses used compared to the green fluorescent protein (GFP) expression driven by the viral cytomegalovirus (CMV) promoter. In most animals the storage was decreased by at least 50% as compared to untreated AGU mouse brains. Remarkably, >90% correction of storage at the ipsilateral cortex was found with the NSE promoter at 4 weeks and 2 months after injection. Additionally, partial clearance of storage was demonstrated also in the contralateral side of the brain. CONCLUSIONS: These data implicate that tissue-specific promoters are especially useful in virus-mediated gene therapy aiming at long-term gene expression.


Assuntos
Adenoviridae/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/terapia , Lisossomos/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Aspartilglucosilaminase/genética , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Regulação Enzimológica da Expressão Gênica , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Tálamo/citologia , Tálamo/patologia
10.
Anal Chem ; 78(8): 2665-71, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16615778

RESUMO

A novel, open tubular capillary electrochromatographic method was developed for the in vitro oxidation of low-density lipoprotein (LDL) particles. Low-density lipoprotein particles with molar mass of approximately 2.5 MDa yielded a stable stationary phase at temperatures 25 and 37 degrees C and at pH values from 3.2 to 7.4. The quality of the coatings was not influenced by variations in the LDL concentration in the coating solutions (within the range of 2-0.015 mg/mL) with the coating procedure used in the study. Radiolabeled LDL stationary phases and scanning electron microscopy, employed to shed light on the location and coating density of LDL particles on the inner surface of the capillary wall, confirmed the presence of an LDL monolayer and almost 100% coating efficiency (99 +/- 8%). In addition, the radioactivity measurements allowed estimation of the amount of LDL present in a single capillary coating. Capillaries coated with human LDL particles were submitted to different oxidative conditions by changing the concentration of the oxidant (CuSO4), oxidation time, pH value, and temperature. The oxidation procedure was followed with electroosmotic flow mobility, which served as an indicator of the increase in total negative charges of LDL coatings, and by asymmetrical field flow fractionation, which measured the changes in size of the lipoprotein particles. The results indicated that oxidation of LDL was progressing with increasing time, temperature, and concentration of the oxidant as expected. The oxidation process was faster around neutral pH values (pH 6.5-7.4) and inhibited at acidic pH values (pH 5.5 and lower).


Assuntos
Cromatografia Capilar Eletrocinética Micelar/métodos , Lipoproteínas LDL/sangue , Sulfato de Cobre/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Marcação por Isótopo , Lipoproteínas LDL/química , Microscopia Eletrônica de Varredura , Oxidantes/farmacologia , Oxirredução , Reprodutibilidade dos Testes , Temperatura , Fatores de Tempo
11.
J Gene Med ; 5(6): 472-82, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12797112

RESUMO

BACKGROUND: Aspartylglucosaminuria (AGU) represents diseases affecting the central nervous system and is caused by a deficiency of a lysosomal enzyme, aspartylglucosaminidase (AGA). AGA, like lysosomal enzymes in general, are good targets for gene therapy since they move from cell to cell using the mannose-6-phosphate receptor. Consequently, only a minority of target cells need to be corrected. Here, we wanted to determine which cell type, neurons or glia would better produce AGA to be transported to adjacent cells for use in possible treatment strategies. METHODS: Adenoviruses containing tissue-specific glial fibrillary acidic protein (GFAP) promoter and neuron-specific enolase (NSE) promoter were generated to target expression of AGA in Aga-deficient mouse primary glial and neuronal cell cultures. In addition an endogenous AGA promoter was used. The experimental design was planned to measure the enzymatic activities in the cells and media of neurons and glia infected with each specific virus. The endocytosis of AGA was analyzed by incubating neuronal and glial cells with media produced by each virus-cell combination. RESULTS: AGA promoter was shown to be a very powerful glia promoter producing 32 times higher specific AGA activity in glia than in neurons. GFAP and NSE promoters also produced a clear overexpression of AGA in glia and neurons, respectively. Interestingly, both the NSE and GFAP promoters were not cell-specific in our system. The amount of exocytosed AGA was significantly higher in glial cells than neurons and glial cells were also found to have a greater capacity to endocytose AGA. CONCLUSIONS: These data indicate the importance of glial cells in the expression and transport of AGA. Subsequently, new approaches can be developed for therapeutic intervention.


Assuntos
Aspartilglucosilaminase/metabolismo , Neuroglia/metabolismo , Adenoviridae/genética , Animais , Aspartilglucosilaminase/biossíntese , Células Cultivadas , Endocitose , Imunofluorescência , Vetores Genéticos , Proteína Glial Fibrilar Ácida/genética , Doenças por Armazenamento dos Lisossomos/terapia , Camundongos , Neuroglia/fisiologia , Neurônios/enzimologia , Fosfopiruvato Hidratase/genética , Plasmídeos/genética , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA