RESUMO
The oxygenation of the atmosphere â¼2.45-2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth's redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ(65)CuERM-AE633) in organic carbon-rich shales spanning the period 2.66-2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in (65)Cu, along with the preferential removal of (65)Cu by iron oxides, left seawater and marine biomass depleted in (65)Cu but enriched in (63)Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ(65)Cu values coincides with a shift to negative sedimentary δ(56)Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ(65)Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past.
RESUMO
The Great Oxidation Event (GOE) is currently viewed as a protracted process during which atmospheric oxygen increased above â¼10(-5) times the present atmospheric level (PAL). This threshold represents an estimated upper limit for sulfur isotope mass-independent fractionation (S-MIF), an Archean signature of atmospheric anoxia that begins to disappear from the rock record at 2.45 Ga. However, an increasing number of papers have suggested that the timing for oxidative continental weathering, and by conventional thinking the onset of atmospheric oxygenation, was hundreds of million years earlier than previously thought despite the presence of S-MIF. We suggest that this apparent discrepancy can be resolved by the earliest oxidative-weathering reactions occurring in benthic and soil environments at profound redox disequilibrium with the atmosphere, such as biological soil crusts and freshwater microbial mats covering riverbed, lacustrine, and estuarine sediments. We calculate that oxygenic photosynthesis in these millimeter-thick ecosystems provides sufficient oxidizing equivalents to mobilize sulfate and redox-sensitive trace metals from land to the oceans while the atmosphere itself remained anoxic with its attendant S-MIF signature. As continental freeboard increased significantly between 3.0 and 2.5 Ga, the chemical and isotopic signatures of benthic oxidative weathering would have become more globally significant from a mass-balance perspective. These observations help reconcile evidence for pre-GOE oxidative weathering with the history of atmospheric chemistry, and support the plausible antiquity of a terrestrial biosphere populated by cyanobacteria well before the GOE.
Assuntos
Fósseis , Oxigênio , Fotossíntese , Planeta TerraRESUMO
The enrichment of redox-sensitive trace metals in ancient marine sedimentary rocks has been used to determine the timing of the oxidation of the Earth's land surface. Chromium (Cr) is among the emerging proxies for tracking the effects of atmospheric oxygenation on continental weathering; this is because its supply to the oceans is dominated by terrestrial processes that can be recorded in the Cr isotope composition of Precambrian iron formations. However, the factors controlling past and present seawater Cr isotope composition are poorly understood. Here we provide an independent and complementary record of marine Cr supply, in the form of Cr concentrations and authigenic enrichment in iron-rich sedimentary rocks. Our data suggest that Cr was largely immobile on land until around 2.48 Gyr ago, but within the 160 Myr that followed--and synchronous with independent evidence for oxygenation associated with the Great Oxidation Event (see, for example, refs 4-6)--marked excursions in Cr content and Cr/Ti ratios indicate that Cr was solubilized at a scale unrivalled in history. As Cr isotope fractionations at that time were muted, Cr must have been mobilized predominantly in reduced, Cr(III), form. We demonstrate that only the oxidation of an abundant and previously stable crustal pyrite reservoir by aerobic-respiring, chemolithoautotrophic bacteria could have generated the degree of acidity required to solubilize Cr(III) from ultramafic source rocks and residual soils. This profound shift in weathering regimes beginning at 2.48 Gyr ago constitutes the earliest known geochemical evidence for acidophilic aerobes and the resulting acid rock drainage, and accounts for independent evidence of an increased supply of dissolved sulphate and sulphide-hosted trace elements to the oceans around that time. Our model adds to amassing evidence that the Archaean-Palaeoproterozoic boundary was marked by a substantial shift in terrestrial geochemistry and biology.
Assuntos
Bactérias Aeróbias/metabolismo , Cromo/química , Sedimentos Geológicos/química , Ferro/metabolismo , Oxirredução , Sulfetos/metabolismo , Cromo/análise , Sedimentos Geológicos/microbiologia , Concentração de Íons de Hidrogênio , Ferro/química , Rios , Água do Mar/química , Fatores de TempoRESUMO
Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from â¼750 to â¼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.
Assuntos
Organismos Aquáticos/metabolismo , Evolução Biológica , Fosfatos/metabolismo , Animais , Atmosfera/química , Compostos Férricos/análise , Compostos Férricos/metabolismo , Sedimentos Geológicos/química , História Antiga , Camada de Gelo , Ferro/análise , Ferro/metabolismo , Biologia Marinha , Oceanos e Mares , Oxirredução , Oxigênio/análise , Oxigênio/metabolismo , Fosfatos/análise , Fósforo/análise , Fósforo/metabolismo , Água do Mar/química , Dióxido de Silício/análise , Dióxido de Silício/metabolismoRESUMO
The partial pressure of oxygen in Earth's atmosphere has increased dramatically through time, and this increase is thought to have occurred in two rapid steps at both ends of the Proterozoic Eon (â¼2.5-0.543 Ga). However, the trajectory and mechanisms of Earth's oxygenation are still poorly constrained, and little is known regarding attendant changes in ocean ventilation and seafloor redox. We have a particularly poor understanding of ocean chemistry during the mid-Proterozoic (â¼1.8-0.8 Ga). Given the coupling between redox-sensitive trace element cycles and planktonic productivity, various models for mid-Proterozoic ocean chemistry imply different effects on the biogeochemical cycling of major and trace nutrients, with potential ecological constraints on emerging eukaryotic life. Here, we exploit the differing redox behavior of molybdenum and chromium to provide constraints on seafloor redox evolution by coupling a large database of sedimentary metal enrichments to a mass balance model that includes spatially variant metal burial rates. We find that the metal enrichment record implies a Proterozoic deep ocean characterized by pervasive anoxia relative to the Phanerozoic (at least â¼30-40% of modern seafloor area) but a relatively small extent of euxinic (anoxic and sulfidic) seafloor (less than â¼1-10% of modern seafloor area). Our model suggests that the oceanic Mo reservoir is extremely sensitive to perturbations in the extent of sulfidic seafloor and that the record of Mo and chromium enrichments through time is consistent with the possibility of a Mo-N colimited marine biosphere during many periods of Earth's history.
Assuntos
Atmosfera/análise , Sedimentos Geológicos/análise , Modelos Teóricos , Oceanografia/métodos , Oxigênio/análise , Oxigênio/história , Plâncton/metabolismo , Simulação por Computador , História Antiga , Metais/análise , Oceanos e Mares , OxirreduçãoRESUMO
It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.
Assuntos
Euryarchaeota/metabolismo , Níquel/análise , Oxirredução , Água do Mar/química , Água do Mar/microbiologia , Atmosfera/química , Sedimentos Geológicos/química , Ferro/análise , Níquel/metabolismo , Oceanos e MaresRESUMO
The availability of nutrients in seawater, such as dissolved phosphorus (P), is thought to have regulated the evolution and activity of microbial life in Earth's early oceans. Marine concentrations of bioavailable phosphorus spanning the Archean Eon remain a topic of debate, with variable estimates indicating either low (0.04 to 0.13â µM P) or high (10 to 100â µM P) dissolved P in seawater. The large uncertainty on these estimates reflects in part a lack of clear proxy signals recorded in sedimentary rocks. Contrary to some recent views, we show here that iron formations (IFs) are reliable recorders of past phosphorus concentrations and preserved a primary seawater signature. Using measured P and iron (Fe) contents in Neoarchean IF from Carajás (Brazil), we demonstrate for the first time a clear partitioning coefficient relationship in the P-Fe systematics of this IF, which, in combination with experimental and Archean literature data, permits us to constrain Archean seawater to a mean value of 0.063 ± 0.05â µM dissolved phosphorus. Our data set suggests that low-phosphorus conditions prevailed throughout the first half of Earth's history, likely as the result of limited continental emergence and marine P removal by iron oxyhydroxide precipitation, supporting prior suggestions that changes in ancient marine P availability at the end of the Archean modulated marine productivity, and ultimately, the redox state of Earth's early oceans and atmosphere. Classification: Physical Sciences, Earth, Atmospheric and Planetary Sciences.
RESUMO
Microbial mats floating within multiple hydrothermally sourced streams in El Tatio, Chile, frequently exhibit brittle siliceous crusts (~1 mm thick) above the air-water interface. The partially silicified mats contain a diverse assemblage of microbial clades and metabolisms, including cyanobacteria performing oxygenic photosynthesis. Surficial crusts are composed of several amorphous silica layers containing well-preserved filaments (most likely cyanobacteria) and other cellular textures overlying EPS-rich unsilicified mats. Environmental logs, silica crust distribution, and microbial preservation patterns provide evidence for crust formation via repeated cycles of evaporation and silica precipitation. Within the mats, in situ microelectrode profiling reveals that daytime oxygen concentrations and pH values are diminished beneath silica crusts compared with adjacent unencrusted communities, indicating localized inhibition of oxygenic photosynthesis due to light attenuation. As a result, aqueous conditions under encrusted mats have a higher saturation state with regard to amorphous silica compared with adjacent, more active mats where high pH increases silica solubility, likely forming a modest feedback loop between diminished photosynthesis and crust precipitation. However, no fully lithified sinters are associated with floating encrusted mats in El Tatio streams, as both subaqueous and subaerial silica precipitation are limited by undersaturated, low-SiO2 (<150 ppm) stream waters. By contrast, well-cemented sinters can form by evaporation in silica-undersaturated solutions above 200 ppm SiO2 . Floating mats in El Tatio therefore represent a specific sinter preservation window, where evaporation in silica-undersaturated microbial mats produces crusts, which preserve cells and affect mat chemistry, but low-silica concentrations prevent the formation of lasting sinter deposits. Patterns of silica precipitation in El Tatio microbial communities show that the preservation potential of silicifying mats in the rock record is strongly dependent on aqueous silica concentrations.
Assuntos
Cianobactérias , Dióxido de Silício , Chile , Oxigênio , RiosRESUMO
Microbial activity is often invoked as a direct or indirect contributor to the precipitation of ancient chemical sedimentary rocks such as Precambrian iron formations (IFs). Determining a specific metabolic pathway from the geological record remains a challenge, however, due to a lack of constraints on the initial conditions and microbially induced redox reactions involved in the formation of iron oxides. Thus, there is ongoing debate concerning the role of photoferrotrophy, that is the process by which inorganic carbon is fixed into organic matter using light as an energy source and Fe(II) as an electron donor, in the deposition of IFs. Here, we examine ~2.74-Ga-old Neoarchean IFs and associated carbonates from the Carajás Mineral Province, Brazil, to reconstruct redox conditions and to infer the oxidizing mechanism that allowed one of the world's largest iron deposits to form. The absence of cerium (Ce) anomalies reveals that conditions were pervasively anoxic during IF deposition, while unprecedented europium (Eu) anomalies imply that Fe was supplied by intense hydrothermal activity. A positive and homogeneous Fe isotopic signal in space and time in these IFs indicates a low degree of partial oxidation of Fe(II), which, combined with the presence of 13 C-depleted organic matter, points to a photoautotrophic metabolic driver. Collectively, our results argue in favor of reducing conditions during IF deposition and suggest anoxygenic photosynthesis as the most plausible mechanism responsible for Fe oxidation in the Carajás Basin.
Assuntos
Ferro , Fotossíntese , Brasil , Carbonatos , OxirreduçãoRESUMO
Stable isotope signatures of elements related to life such as carbon and nitrogen can be powerful biomarkers that provide key information on the biological origin of organic remains and their paleoenvironments. Marked advances have been achieved in the last decade in our understanding of the coupled evolution of biological carbon and nitrogen cycling and the chemical evolution of the early Earth thanks, in part, to isotopic signatures preserved in fossilized microbial mats and organic matter of marine origin. However, the geologic record of the early continental biosphere, as well as its evolution and biosignatures, is still poorly constrained. Following a recent report of direct fossil evidence of life on land at 3.22 Ga, we compare here the carbon and nitrogen isotopic signals of this continental Archean biosphere with biosignatures of cyanobacteria biological soil crusts (cyanoBSCs) colonizing modern arid environments. We report the first extended δ13C and δ15N data set from modern cyanoBSCs and show that these modern communities harbor specific isotopic biosignatures that compare well with continental Archean organic remains. We therefore suggest that cyanoBSCs are likely relevant analogs for the earliest continental ecosystems. As such, they can provide key information on the timing, extent, and possibly mechanism of colonization of the early Earth's emergent landmasses.
Assuntos
Isótopos de Carbono/análise , Cianobactérias/química , Fósseis , Isótopos de Nitrogênio/análise , Solo/química , Cianobactérias/metabolismo , Planeta Terra , Ciclo do Nitrogênio , Origem da Vida , Microbiologia do SoloRESUMO
The Great Oxidation Event (GOE) has been defined as the time interval when sufficient atmospheric oxygen accumulated to prevent the generation and preservation of mass-independent fractionation of sulphur isotopes (MIF-S) in sedimentary rocks. Existing correlations suggest that the GOE was rapid and globally synchronous. Here we apply sulphur isotope analysis of diagenetic sulphides combined with U-Pb and Re-Os geochronology to document the sulphur cycle evolution in Western Australia spanning the GOE. Our data indicate that, from ~2.45 Gyr to beyond 2.31 Gyr, MIF-S was preserved in sulphides punctuated by several episodes of MIF-S disappearance. These results establish the MIF-S record as asynchronous between South Africa, North America and Australia, argue for regional-scale modulation of MIF-S memory effects due to oxidative weathering after the onset of the GOE, and suggest that the current paradigm of placing the GOE at 2.33-2.32 Ga based on the last occurrence of MIF-S in South Africa should be re-evaluated.
RESUMO
Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to examine nutrient limitations on early biological productivity. However, in order for IF to be employed as paleomarine proxies, lumped-process distribution coefficients for the element of interest must be experimentally determined or assumed. This necessitates consideration of bulk ocean chemistry and which authigenic ferric iron minerals controlled the sorption reactions. It also requires an assessment of metal mobilization reactions that might have occurred in the water column during particle descent and during post-depositional burial. Here, we summarize recent developments pertaining to the interpretation and fidelity of the IF record in reconstructions of oceanic trace element evolution. Using an updated compilation, we reexamine and validate temporal trends previously reported for the nickel content in IF (see Konhauser et al., 2009 ). Finally, we reevaluate the consequences of methanogen Ni starvation in the context of evolving views of the Archean ocean-climate system and how the Ni famine may have ultimately facilitated the rise in atmospheric oxygen.
Assuntos
Sedimentos Geológicos/química , Ferro/química , Níquel/química , Água do Mar/química , Atmosfera/química , Planeta Terra , Hidrogênio , Metano , Oceanos e Mares , OxigênioRESUMO
Evaporation of silica-rich geothermal waters is one of the main abiotic drivers of the formation of silica sinters around hot springs. An important role in sinter structural development is also played by the indigenous microbial communities, which are fossilized and eventually encased in the silica matrix. The combination of these two factors results in a wide variety of sinter structures and fabrics. Despite this, no previous experimental fossilization studies have focused on evaporative-driven silica precipitation. We present here the results of several experiments aimed at simulating the formation of sinters through evaporation. Silica solutions at different concentrations were repeatedly allowed to evaporate in both the presence and absence of the cyanobacterium Synechococcus elongatus. Without microorganisms, consecutive silica additions led to the formation of well-laminated deposits. By contrast, when microorganisms were present, they acted as reactive surfaces for heterogeneous silica particle nucleation; depending on the initial silica concentration, the deposits were then either porous with a mixture of silicified and unmineralized cells, or they formed a denser structure with a complete entombment of the cells by a thick silica crust. The deposits obtained experimentally showed numerous similarities in terms of their fabric to those previously reported for natural hot springs, demonstrating the complex interplay between abiotic and biotic processes during silica sinter growth.
Assuntos
Fontes Termais/química , Fontes Termais/microbiologia , Dióxido de Silício/química , Synechococcus/química , Precipitação Química , Microscopia Eletrônica de Varredura , Transição de Fase , Soluções , Synechococcus/ultraestrutura , VolatilizaçãoRESUMO
During the Archean, massive amounts of iron were deposited in the form of banded iron formations. It has been suggested that sedimenting particles of ferric oxyhydroxide may have stripped dissolved phosphate from the oceans, causing a reduction in phytoplankton productivity. However, that model does not take into account the high concentration of dissolved silica that was present in seawater at that time. We show experimentally that silica effectively competes with phosphate for sorption sites on ferrihydrite particles. Furthermore, coprecipitation of silica with ferrihydrite reduces particle reactivity toward phosphate. Hence, Archean oceans probably contained considerably more phosphate than previously predicted.