Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(11)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33729988

RESUMO

Understanding magnetic-field generation and amplification in turbulent plasma is essential to account for observations of magnetic fields in the universe. A theoretical framework attributing the origin and sustainment of these fields to the so-called fluctuation dynamo was recently validated by experiments on laser facilities in low-magnetic-Prandtl-number plasmas ([Formula: see text]). However, the same framework proposes that the fluctuation dynamo should operate differently when [Formula: see text], the regime relevant to many astrophysical environments such as the intracluster medium of galaxy clusters. This paper reports an experiment that creates a laboratory [Formula: see text] plasma dynamo. We provide a time-resolved characterization of the plasma's evolution, measuring temperatures, densities, flow velocities, and magnetic fields, which allows us to explore various stages of the fluctuation dynamo's operation on seed magnetic fields generated by the action of the Biermann-battery mechanism during the initial drive-laser target interaction. The magnetic energy in structures with characteristic scales close to the driving scale of the stochastic motions is found to increase by almost three orders of magnitude and saturate dynamically. It is shown that the initial growth of these fields occurs at a much greater rate than the turnover rate of the driving-scale stochastic motions. Our results point to the possibility that plasma turbulence produced by strong shear can generate fields more efficiently at the driving scale than anticipated by idealized magnetohydrodynamics (MHD) simulations of the nonhelical fluctuation dynamo; this finding could help explain the large-scale fields inferred from observations of astrophysical systems.

2.
Sci Adv ; 8(10): eabj6799, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35263132

RESUMO

In conventional gases and plasmas, it is known that heat fluxes are proportional to temperature gradients, with collisions between particles mediating energy flow from hotter to colder regions and the coefficient of thermal conduction given by Spitzer's theory. However, this theory breaks down in magnetized, turbulent, weakly collisional plasmas, although modifications are difficult to predict from first principles due to the complex, multiscale nature of the problem. Understanding heat transport is important in astrophysical plasmas such as those in galaxy clusters, where observed temperature profiles are explicable only in the presence of a strong suppression of heat conduction compared to Spitzer's theory. To address this problem, we have created a replica of such a system in a laser laboratory experiment. Our data show a reduction of heat transport by two orders of magnitude or more, leading to large temperature variations on small spatial scales (as is seen in cluster plasmas).

3.
Sci Am ; 306(3): 10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22375308
4.
Rev Sci Instrum ; 88(12): 123507, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29289159

RESUMO

Proton radiography is an important diagnostic method for laser plasma experiments and is particularly important in the analysis of magnetized plasmas. The theory of radiographic image analysis has heretofore only permitted somewhat limited analysis of the radiographs of such plasmas. We furnish here a theory that remedies this deficiency. We show that to linear order in magnetic field gradients, proton radiographs are projection images of the MHD current along the proton trajectories. We demonstrate that in the linear regime (i.e., the small image contrast regime), the full structure of the projected perpendicular magnetic field can be reconstructed by solving a steady-state inhomogeneous 2-dimensional diffusion equation sourced by the radiograph fluence contrast data. We explore the validity of the scheme with increasing image contrast, as well as limitations of the inversion method due to the Poisson noise, discretization errors, radiograph edge effects, and obstruction by laser target structures. We also provide a separate analysis that is suited to the inference of isotropic-homogeneous magnetic turbulence spectra. Finally, we discuss extension of these results to the nonlinear regime (i.e., the order unity image contrast regime).

5.
Phys Rev Lett ; 100(23): 234503, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18643507

RESUMO

We perform high-resolution numerical simulations of homogenous and isotropic compressible turbulence, with an average 3D Mach number close to 0.3. We study the statistical properties of intermittency for velocity, density, and entropy. For the velocity field, which is the only quantity that can be compared to the isotropic incompressible case, we find no statistical differences in its behavior in the inertial range due either to the slight compressibility or to the different dissipative mechanism. For the density field, we find evidence of "frontlike" structures, although no shocks are produced by the simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA