Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 552(7683): 116-120, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29186113

RESUMO

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Assuntos
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Reparo de Erro de Pareamento de DNA/genética , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Animais , Anticorpos Antineoplásicos/imunologia , Anticorpos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína 1 Homóloga a MutL/deficiência , Proteína 1 Homóloga a MutL/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Evasão Tumoral/genética , Evasão Tumoral/imunologia
2.
Br J Cancer ; 117(3): 347-352, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28654634

RESUMO

BACKGROUND: Combined MET and BRAF inhibition showed clinical benefit in a patient with rectal cancer carrying BRAFV600E and MET amplification. However after 4 months, acquired resistance emerged and the patient deceased shortly after disease progression. The mechanism of resistance to this drug combination is unknown. METHODS: We analysed plasma circulating tumour DNA obtained at progression by exome sequencing and digital PCR. MET gene and mRNA in situ hybridisation analyses in two bioptic specimens obtained at progression were used to confirm the plasma data. RESULTS: We identified in plasma MET gene hyper-amplification as a potential mechanism underlying therapy resistance. Increased MET gene copy and transcript levels were detected in liver and lymph node metastatic biopsies. Finally, transduction of MET in BRAF mutant colorectal cancer cells conferred refractoriness to BRAF and MET inhibition. CONCLUSIONS: We identified in a rectal cancer patient MET gene hyper-amplification as mechanism of resistance to dual BRAF and MET inhibition.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , DNA de Neoplasias/sangue , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-met/genética , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Linhagem Celular , Crizotinibe , Progressão da Doença , Evolução Fatal , Amplificação de Genes , Humanos , Indóis/administração & dosagem , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Neoplasias Retais/patologia , Sulfonamidas/administração & dosagem , Vemurafenib
3.
Hum Mutat ; 35(2): 208-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24282149

RESUMO

Understanding the role of single-nucleotide polymorphisms (SNPs) in the pathological process represents a unique experimental challenge especially when the variants occur outside of coding regions. The noncoding SNP rs61764370 located in the 3'-untranslated region of Kirsten rat sarcoma viral oncogene homolog (KRAS) has been implicated as a risk factor for the development of cancer and the response to targeted therapies. This cancer-associated variant is thought to affect the binding of the microRNA let-7, which allegedly modulates KRAS expression. Using site-specific homologous recombination, we inserted the rs61764370:T>G KRAS gene variant in the colorectal cancer cell line SW48 (SW48 +SNP) and assessed the cellular and biochemical phenotype. We observed a significant increase in cellular proliferation, as well as a reduction in the levels of the microRNA let-7a, let-7b, and let-7c. Transcriptional and biochemical analysis showed no concomitant change in the KRAS protein expression or modulation of the downstream mitogen activated kinase or PI3K/AKT signaling. These results suggest that the cancer-associated rs61764370 variant exerts a biological effect not through transcriptional modulation of KRAS but rather by tuning the expression of the microRNA let-7.


Assuntos
Neoplasias Colorretais/genética , Genes ras , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/patologia , Técnicas de Introdução de Genes , Variação Genética , Células HEK293 , Recombinação Homóloga , Humanos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais , Proteínas ras/metabolismo
4.
BMC Cancer ; 14: 718, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25256166

RESUMO

BACKGROUND: Glioblastoma is a highly malignant brain tumor for which no cure is available. To identify new therapeutic targets, we performed a mutation analysis of kinase genes in glioblastoma. METHODS: Database mining and a literature search identified 76 kinases that have been found to be mutated at least twice in multiple cancer types before. Among those we selected 34 kinase genes for mutation analysis. We also included IDH1, IDH2, PTEN, TP53 and NRAS, genes that are known to be mutated at considerable frequencies in glioblastoma. In total, 174 exons of 39 genes in 113 glioblastoma samples from 109 patients and 16 high-grade glioma (HGG) cell lines were sequenced. RESULTS: Our mutation analysis led to the identification of 148 non-synonymous somatic mutations, of which 25 have not been reported before in glioblastoma. Somatic mutations were found in TP53, PTEN, IDH1, PIK3CA, EGFR, BRAF, EPHA3, NRAS, TGFBR2, FLT3 and RPS6KC1. Mapping the mutated genes into known signaling pathways revealed that the large majority of them plays a central role in the PI3K-AKT pathway. CONCLUSIONS: The knowledge that at least 50% of glioblastoma tumors display mutational activation of the PI3K-AKT pathway should offer new opportunities for the rational development of therapeutic approaches for glioblastomas. However, due to the development of resistance mechanisms, kinase inhibition studies targeting the PI3K-AKT pathway for relapsing glioblastoma have mostly failed thus far. Other therapies should be investigated, targeting early events in gliomagenesis that involve both kinases and non-kinases.


Assuntos
Análise Mutacional de DNA , Glioblastoma/enzimologia , Glioblastoma/genética , Fosfotransferases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Isocitrato Desidrogenase/genética , Sistema de Sinalização das MAP Quinases , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , Proteína Supressora de Tumor p53/genética , Adulto Jovem
5.
Genome Med ; 16(1): 15, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243308

RESUMO

BACKGROUND: Immunotherapy based on checkpoint inhibitors is highly effective in mismatch repair deficient (MMRd) colorectal cancer (CRC). These tumors carry a high number of mutations, which are predicted to translate into a wide array of neoepitopes; however, a systematic classification of the neoantigen repertoire in MMRd CRC is lacking. Mass spectrometry peptidomics has demonstrated the existence of MHC class I associated peptides (MAPs) originating from non-coding DNA regions. Based on these premises we investigated DNA genomic regions responsible for generating MMRd-induced peptides. METHODS: We exploited mouse CRC models in which the MMR gene Mlh1 was genetically inactivated. Isogenic cell lines CT26 Mlh1+/+ and Mlh1-/- were inoculated in immunocompromised and immunocompetent mice. Whole genome and RNA sequencing data were generated from samples obtained before and after injection in murine hosts. First, peptide databases were built from transcriptomes of isogenic cell lines. We then compiled a database of peptides lost after tumor cells injection in immunocompetent mice, likely due to immune editing. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matched next-generation sequencing databases were employed to identify the DNA regions from which the immune-targeted MAPs originated. Finally, we adopted in vitro T cell assays to verify whether MAP-specific T cells were part of the in vivo immune response against Mlh1-/- cells. RESULTS: Whole genome sequencing analyses revealed an unbalanced distribution of immune edited alterations across the genome in Mlh1-/- cells grown in immunocompetent mice. Specifically, untranslated (UTR) and coding regions exhibited the largest fraction of mutations leading to highly immunogenic peptides. Moreover, the integrated computational and LC-MS/MS analyses revealed that MAPs originate mainly from atypical translational events in both Mlh1+/+ and Mlh1-/- tumor cells. In addition, mutated MAPs-derived from UTRs and out-of-frame translation of coding regions-were highly enriched in Mlh1-/- cells. The MAPs trigger T-cell activation in mice primed with Mlh1-/- cells. CONCLUSIONS: Our results suggest that-in comparison to MMR proficient CRC-MMRd tumors generate a significantly higher number of non-canonical mutated peptides able to elicit T cell responses. These results reveal the importance of evaluating the diversity of neoepitope repertoire in MMRd tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias do Colo , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Animais , Camundongos , Reparo de Erro de Pareamento de DNA/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neoplasias Colorretais/patologia , Peptídeos , Antígenos de Histocompatibilidade Classe I/genética , DNA
6.
Mol Oncol ; 18(6): 1552-1570, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348572

RESUMO

Serine/threonine-protein kinase B-raf (BRAF) mutations are found in 8-15% of colorectal cancer patients and identify a subset of tumors with poor outcome in the metastatic setting. We have previously reported that BRAF-mutant human cells display a high rate of protein production, causing proteotoxic stress, and are selectively sensitive to the proteasome inhibitors bortezomib and carfilzomib. In this work, we tested whether carfilzomib could restrain the growth of BRAF-mutant colorectal tumors not only by targeting cancer cells directly, but also by promoting an immune-mediated antitumor response. In human and mouse colorectal cancer cells, carfilzomib triggered robust endoplasmic reticulum stress and autophagy, followed by the emission of immunogenic-damage-associated molecules. Intravenous administration of carfilzomib delayed the growth of BRAF-mutant murine tumors and mobilized the danger-signal proteins calreticulin and high mobility group box 1 (HMGB1). Analyses of drug-treated samples revealed increased intratumor recruitment of activated cytotoxic T cells and natural killers, concomitant with the downregulation of forkhead box protein P3 (Foxp3)+ T-cell surface glycoprotein CD4 (CD4)+ T cells, indicating that carfilzomib promotes reshaping of the immune microenvironment of BRAF-mutant murine colorectal tumors. These results will inform the design of clinical trials in BRAF-mutant colorectal cancer patients.


Assuntos
Neoplasias Colorretais , Mutação , Oligopeptídeos , Proteínas Proto-Oncogênicas B-raf , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Humanos , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Camundongos Endogâmicos C57BL
7.
Cell Rep Med ; 5(2): 101376, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38228147

RESUMO

The bacterial genotoxin colibactin promotes colorectal cancer (CRC) tumorigenesis, but systematic assessment of its impact on DNA repair is lacking, and its effect on response to DNA-damaging chemotherapeutics is unknown. We find that CRC cell lines display differential response to colibactin on the basis of homologous recombination (HR) proficiency. Sensitivity to colibactin is induced by inhibition of ATM, which regulates DNA double-strand break repair, and blunted by HR reconstitution. Conversely, CRC cells chronically infected with colibactin develop a tolerant phenotype characterized by restored HR activity. Notably, sensitivity to colibactin correlates with response to irinotecan active metabolite SN38, in both cell lines and patient-derived organoids. Moreover, CRC cells that acquire colibactin tolerance develop cross-resistance to SN38, and a trend toward poorer response to irinotecan is observed in a retrospective cohort of CRCs harboring colibactin genomic island. Our results shed insight into colibactin activity and provide translational evidence on its chemoresistance-promoting role in CRC.


Assuntos
Neoplasias Colorretais , Escherichia coli , Peptídeos , Policetídeos , Humanos , Irinotecano/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Estudos Retrospectivos , DNA/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia
8.
Genome Med ; 16(1): 118, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385243

RESUMO

BACKGROUND: Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally invasive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA in the bloodstream through a combination of events, including cell death, active and passive release. However, the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA release. METHODS: We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer (CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation on cfDNA release. RESULTS: Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shedding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the supernatant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding. CONCLUSIONS: Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid biopsy assays.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Desmetilação do DNA , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ácidos Nucleicos Livres/genética , Linhagem Celular Tumoral , Metilação de DNA , Proliferação de Células , Ilhas de CpG , Biomarcadores Tumorais/genética
9.
Int J Cancer ; 133(5): 1259-65, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23404247

RESUMO

KRAS mutations are the most common oncogenic event in colorectal cancer (CRC) progression and their occurrence is associated with lack of response to anti epidermal growth factor receptor (EGFR) targeted therapies. Using preclinical models and patients' samples we recently reported that the emergence of KRAS mutations but also KRAS amplification is associated with acquired resistance to the EGFR inhibitors cetuximab or panitumumab. We reasoned that KRAS amplification may also be responsible for primary resistance to these agents. Furthermore, while the prevalence of KRAS mutations has been well established in CRC, little is known about the frequency of KRAS amplification in large CRC series. We performed a screening of 1,039 CRC samples to assess the prevalence of KRAS amplification in this tumor type and further evaluated the role of this genetic alteration on the sensitivity to anti EGFR therapies. We detected KRAS amplification in 7/1,039 (0.67%) and 1/102 evaluable CRC specimens and cell lines, respectively. KRAS amplification was mutually exclusive with KRAS mutations. Tumors or cell lines harboring this genetic lesion are not responsive to anti-EGFR inhibitors. Although KRAS amplification is an infrequent event in CRC, it might be responsible for precluding response to anti-EGFR treatment in a small proportion of patients.


Assuntos
Neoplasias Colorretais/genética , Receptores ErbB/antagonistas & inibidores , Amplificação de Genes , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Humanos , Proteínas Proto-Oncogênicas p21(ras) , Estudos Retrospectivos
10.
Mol Oncol ; 17(8): 1474-1491, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37183363

RESUMO

The introduction of targeted therapies represented one of the most significant advances in the treatment of BRAFV600E melanoma. However, the onset of acquired resistance remains a challenge. Previously, we showed in mouse xenografts that vascular endothelial growth factor (VEGFA) removal enhanced the antitumor effect of BRAF inhibition through the recruitment of M1 macrophages. In this work, we explored the strategy of VEGFA/BRAF inhibition in immunocompetent melanoma murine models. In BRAF mutant D4M melanoma tumors, VEGFA/BRAF targeting reshaped the tumor microenvironment, largely by stimulating infiltration of M1 macrophages and CD8+ T cells, and sensitized tumors to immune checkpoint blockade (ICB). Furthermore, we reported that the association of VEGFA/BRAF targeting with anti-PD-1 antibody (triple therapy) resulted in a durable response and enabled complete tumor eradication in 50% of the mice, establishing immunological memory. Neutralization and CRISPR-Cas-mediated editing of granulocyte-macrophage colony-stimulating factor (GM-CSF) abrogated antitumor response prompted by triple therapy and identified GM-CSF as the cytokine instrumental in M1-macrophage recruitment. Our data suggest that VEGFA/BRAF targeting in melanoma induces the activation of innate and adaptive immunity and prepares tumors for ICB. Our study contributes to understanding the tumor biology of BRAFV600E melanoma and suggests VEGFA as therapeutic target.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Melanoma , Humanos , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Melanoma/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
11.
Cancer Cell ; 41(1): 196-209.e5, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36584674

RESUMO

Patients affected by colorectal cancer (CRC) with DNA mismatch repair deficiency (MMRd), often respond to immune checkpoint blockade therapies, while those with mismatch repair-proficient (MMRp) tumors generally do not. Interestingly, a subset of MMRp CRCs contains variable fractions of MMRd cells, but it is unknown how their presence impacts immune surveillance. We asked whether modulation of the MMRd fraction in MMR heterogeneous tumors acts as an endogenous cancer vaccine by promoting immune surveillance. To test this hypothesis, we use isogenic MMRp (Mlh1+/+) and MMRd (Mlh1-/-) mouse CRC cells. MMRp/MMRd cells mixed at different ratios are injected in immunocompetent mice and tumor rejection is observed when at least 50% of cells are MMRd. To enrich the MMRd fraction, MMRp/MMRd tumors are treated with 6-thioguanine, which leads to tumor rejection. These results suggest that genetic and pharmacological modulation of the DNA mismatch repair machinery potentiate the immunogenicity of MMR heterogeneous tumors.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Animais , Camundongos , Reparo de Erro de Pareamento de DNA/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Instabilidade de Microssatélites
12.
Nat Genet ; 54(7): 976-984, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817983

RESUMO

Compelling evidence shows that cancer persister cells represent a major limit to the long-term efficacy of targeted therapies. However, the phenotype and population dynamics of cancer persister cells remain unclear. We developed a quantitative framework to study persisters by combining experimental characterization and mathematical modeling. We found that, in colorectal cancer, a fraction of persisters slowly replicates. Clinically approved targeted therapies induce a switch to drug-tolerant persisters and a temporary 7- to 50-fold increase of their mutation rate, thus increasing the number of persister-derived resistant cells. These findings reveal that treatment may influence persistence and mutability in cancer cells and pinpoint inhibition of error-prone DNA polymerases as a strategy to restrict tumor recurrence.


Assuntos
Neoplasias Colorretais , Taxa de Mutação , Antibacterianos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Dinâmica Populacional
13.
Clin Cancer Res ; 28(17): 3874-3889, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881546

RESUMO

PURPOSE: Genomic instability is a hallmark of cancer and targeting DNA damage response (DDR) is emerging as a promising therapeutic strategy in different solid tumors. The effectiveness of targeting DDR in colorectal cancer has not been extensively explored. EXPERIMENTAL DESIGN: We challenged 112 cell models recapitulating the genomic landscape of metastatic colorectal cancer with ATM, ATR, CHK1, WEE1, and DNA-PK inhibitors, in parallel with chemotherapeutic agents. We focused then on ATR inhibitors (ATRi) and, to identify putative biomarkers of response and resistance, we analyzed at multiple levels colorectal cancer models highly sensitive or resistant to these drugs. RESULTS: We found that around 30% of colorectal cancers, including those carrying KRAS and BRAF mutations and unresponsive to targeted agents, are sensitive to at least one DDR inhibitor. By investigating potential biomarkers of response to ATRi, we found that ATRi-sensitive cells displayed reduced phospho-RPA32 foci at basal level, while ATRi-resistant cells showed increased RAD51 foci formation in response to replication stress. Lack of ATM and RAD51C expression was associated with ATRi sensitivity. Analysis of mutational signatures and HRDetect score identified a subgroup of ATRi-sensitive models. Organoids derived from patients with metastatic colorectal cancer recapitulated findings obtained in cell lines. CONCLUSIONS: In conclusion, a subset of colorectal cancers refractory to current therapies could benefit from inhibitors of DDR pathways and replication stress. A composite biomarker involving phospho-RPA32 and RAD51 foci, lack of ATM and RAD51C expression, as well as analysis of mutational signatures could be used to identify colorectal cancers likely to respond to ATRi.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Dano ao DNA , Replicação do DNA , Proteína Quinase Ativada por DNA/genética , Humanos , Inibidores de Proteínas Quinases/farmacologia
14.
Proc Natl Acad Sci U S A ; 105(52): 20864-9, 2008 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-19106301

RESUMO

Mutations in oncogenes and tumor suppressor genes are responsible for tumorigenesis and represent favored therapeutic targets in oncology. We exploited homologous recombination to knock-in individual cancer mutations in the genome of nontransformed human cells. Sequential introduction of multiple mutations was also achieved, demonstrating the potential of this strategy to construct tumor progression models. Knock-in cells displayed allele-specific activation of signaling pathways and mutation-specific phenotypes different from those obtainable by ectopic oncogene expression. Profiling of a library of pharmacological agents on the mutated cells showed striking sensitivity or resistance phenotypes to pathway-targeted drugs, often matching those of tumor cells carrying equivalent cancer mutations. Thus, knock-in of single or multiple cancer alleles provides a pharmacogenomic platform for the rational design of targeted therapies.


Assuntos
Alelos , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Introdução de Genes , Genes Supressores de Tumor , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Antineoplásicos/uso terapêutico , Linhagem Celular , Sistemas de Liberação de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Biológicos
15.
Cancer Discov ; 11(7): 1844-1859, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33653693

RESUMO

Inactivation of beta-2 microglobulin (B2M) is considered a determinant of resistance to immune checkpoint inhibitors (ICPi) in melanoma and lung cancers. In contrast, B2M loss does not appear to affect response to ICPis in mismatch repair-deficient (MMRd) colorectal tumors where biallelic inactivation of B2M is frequently observed. We inactivated B2m in multiple murine MMRd cancer models. Although MMRd cells would not readily grow in immunocompetent mice, MMRd B2m null cells were tumorigenic and regressed when treated with anti-PD-1 and anti-CTLA4. The efficacy of ICPis against MMRd B2m null tumors did not require CD8+ T cells but relied on the presence of CD4+ T cells. Human tumors expressing low levels of B2M display increased intratumoral CD4+ T cells. We conclude that B2M inactivation does not blunt the efficacy of ICPi in MMRd tumors, and we identify a unique role for CD4+ T cells in tumor rejection. SIGNIFICANCE: B2M alterations, which impair antigen presentation, occur frequently in microsatellite-unstable colorectal cancers. Although in melanoma and lung cancers B2M loss is a mechanism of resistance to immune checkpoint blockade, we show that MMRd tumors respond to ICPis through CD4+ T-cell activation.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias Colorretais/metabolismo , Microglobulina beta-2/metabolismo , Animais , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C
16.
Acta Neuropathol ; 119(4): 487-94, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20127344

RESUMO

Somatic mutations in the isocitrate dehydrogenase 1 gene (IDH1) occur at high frequency in gliomas and seem to be a prognostic factor for survival in glioblastoma patients. In our set of 98 glioblastoma patients, IDH1 ( R132 ) mutations were associated with improved survival of 1 year on average, after correcting for age and other variables with Cox proportional hazards models. Patients with IDH1 mutations were on average 17 years younger than patients without mutation. Mutated IDH1 has a gain of function to produce 2-hydroxyglutarate by NADPH-dependent reduction of alpha-ketoglutarate, but it is unknown whether NADPH production in gliomas is affected by IDH1 mutations. We assessed the effect of IDH1 (R132 ) mutations on IDH-mediated NADPH production in glioblastomas in situ. Metabolic mapping and image analysis was applied to 51 glioblastoma samples of which 16 carried an IDH1 (R132 ) mutation. NADP+-dependent IDH activity was determined in comparison with activity of NAD+-dependent IDH and all other NADPH-producing dehydrogenases, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase, and hexose-6-phosphate dehydrogenase. The occurrence of IDH1 mutations correlated with approx. twofold diminished NADP+-dependent IDH activity, whereas activity of NAD+-dependent IDH and the other NADP+-dependent dehydrogenases was not affected in situ in glioblastoma. The total NADPH production capacity in glioblastoma was provided for 65% by IDH activity and the occurrence of IDH1 (R132 ) mutation reduced this capacity by 38%. It is concluded that NADPH production is hampered in glioblastoma with IDH1 (R132 ) mutation. Moreover, mutated IDH1 consumes rather than produces NADPH, thus likely lowering NADPH levels even further. The low NADPH levels may sensitize glioblastoma to irradiation and chemotherapy, thus explaining the prolonged survival of patients with mutated glioblastoma.


Assuntos
Glioblastoma/genética , Isocitrato Desidrogenase/genética , Mutação , NADP/metabolismo , Oxirredutases/metabolismo , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Tratamento Farmacológico , Ensaios Enzimáticos , Feminino , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Radioterapia , Análise de Sobrevida
17.
JAMA ; 304(16): 1812-20, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20978259

RESUMO

CONTEXT: Patients with metastatic colorectal cancer who have KRAS codon 12- or KRAS codon 13-mutated tumors are presently excluded from treatment with the anti-epidermal growth factor receptor monoclonal antibody cetuximab. OBJECTIVE: To test the hypothesis that KRAS codon 13 mutations are associated with a better outcome after treatment with cetuximab than observed with other KRAS mutations. DESIGN, SETTING, AND PATIENTS: We studied the association between KRAS mutation status (p.G13D vs other KRAS mutations) and response and survival in a pooled data set of 579 patients with chemotherapy-refractory colorectal cancer treated with cetuximab between 2001 and 2008. Patients were included in the CO.17, BOND, MABEL, EMR202600, EVEREST, BABEL, or SALVAGE clinical trials or received off-study treatment. Univariate and multivariate analyses, adjusting for possible prognostic factors and data set, were performed. The effect of the different mutations was studied in vitro by constructing isogenic cell lines with wild-type KRAS, p.G12V, or p.G13D mutant alleles and treating them with cetuximab. MAIN OUTCOME MEASURES: The main efficacy end point was overall survival. Secondary efficacy end points were response rate and progression-free survival. RESULTS: In comparison with patients with other KRAS-mutated tumors, patients with p.G13D-mutated tumors (n = 32) treated with cetuximab had longer overall survival (median, 7.6 [95% confidence interval {CI}, 5.7-20.5] months vs 5.7 [95% CI, 4.9-6.8] months; adjusted hazard ratio [HR], 0.50; 95% CI, 0.31-0.81; P = .005) and longer progression-free survival (median, 4.0 [95% CI, 1.9-6.2] months vs 1.9 [95% CI, 1.8-2.8] months; adjusted HR, 0.51; 95% CI, 0.32-0.81; P = .004). There was a significant interaction between KRAS mutation status (p.G13D vs other KRAS mutations) and overall survival benefit with cetuximab treatment (adjusted HR, 0.30; 95% CI, 0.14-0.67; P = .003). In vitro and mouse model analysis showed that although p.G12V-mutated colorectal cells were insensitive to cetuximab, p.G13D-mutated cells were sensitive, as were KRAS wild-type cells. CONCLUSIONS: In this analysis, use of cetuximab was associated with longer overall and progression-free survival among patients with chemotherapy-refractory colorectal cancer with p.G13D-mutated tumors than with other KRAS-mutated tumors. Evaluation of cetuximab therapy in these tumors in prospective randomized trials may be warranted.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados , Cetuximab , Ensaios Clínicos como Assunto , Códon , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Seleção de Pacientes , Prognóstico , Proteínas Proto-Oncogênicas p21(ras) , Análise de Sobrevida , Resultado do Tratamento
18.
Sci Transl Med ; 12(532)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32102933

RESUMO

Vitamin C (VitC) is known to directly impair cancer cell growth in preclinical models, but there is little clinical evidence on its antitumoral efficacy. In addition, whether and how VitC modulates anticancer immune responses is mostly unknown. Here, we show that a fully competent immune system is required to maximize the antiproliferative effect of VitC in breast, colorectal, melanoma, and pancreatic murine tumors. High-dose VitC modulates infiltration of the tumor microenvironment by cells of the immune system and delays cancer growth in a T cell-dependent manner. VitC not only enhances the cytotoxic activity of adoptively transferred CD8 T cells but also cooperates with immune checkpoint therapy (ICT) in several cancer types. Combination of VitC and ICT can be curative in models of mismatch repair-deficient tumors with high mutational burden. This work provides a rationale for clinical trials combining ICT with high doses of VitC.


Assuntos
Antineoplásicos , Melanoma , Animais , Antineoplásicos/farmacologia , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Imunoterapia , Camundongos , Microambiente Tumoral
19.
Cancers (Basel) ; 12(3)2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183295

RESUMO

The long-term efficacy of the Epidermal Growth Factor Receptor (EGFR)-targeted antibody cetuximab in advanced colorectal cancer (CRC) patients is limited by the emergence of drug-resistant (persister) cells. Recent studies in other cancer types have shown that cells surviving initial treatment with targeted agents are often vulnerable to alterations in cell metabolism including oxidative stress. Vitamin C (VitC) is an antioxidant agent which can paradoxically trigger oxidative stress at pharmacological dose. Here we tested the hypothesis that VitC in combination with cetuximab could restrain the emergence of secondary resistance to EGFR blockade in CRC RAS/BRAF wild-type models. We found that addition of VitC to cetuximab impairs the emergence of drug persisters, limits the growth of CRC organoids, and significantly delays acquired resistance in CRC patient-derived xenografts. Mechanistically, proteomic and metabolic flux analysis shows that cetuximab blunts carbohydrate metabolism by blocking glucose uptake and glycolysis, beyond promoting slow but progressive ROS production. In parallel, VitC disrupts iron homeostasis and further increases ROS levels ultimately leading to ferroptosis. Combination of VitC and cetuximab orchestrates a synthetic lethal metabolic cell death program triggered by ATP depletion and oxidative stress, which effectively limits the emergence of acquired resistance to anti-EGFR antibodies. Considering that high-dose VitC is known to be safe in cancer patients, our findings might have clinical impact on CRC patients treated with anti-EGFR therapies.

20.
Cancer Discov ; 10(8): 1129-1139, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32430388

RESUMO

Most patients with KRAS G12C-mutant non-small cell lung cancer (NSCLC) experience clinical benefit from selective KRASG12C inhibition, whereas patients with colorectal cancer bearing the same mutation rarely respond. To investigate the cause of the limited efficacy of KRASG12C inhibitors in colorectal cancer, we examined the effects of AMG510 in KRAS G12C colorectal cancer cell lines. Unlike NSCLC cell lines, KRAS G12C colorectal cancer models have high basal receptor tyrosine kinase (RTK) activation and are responsive to growth factor stimulation. In colorectal cancer lines, KRASG12C inhibition induces higher phospho-ERK rebound than in NSCLC cells. Although upstream activation of several RTKs interferes with KRASG12C blockade, we identify EGFR signaling as the dominant mechanism of colorectal cancer resistance to KRASG12C inhibitors. The combinatorial targeting of EGFR and KRASG12C is highly effective in colorectal cancer cells and patient-derived organoids and xenografts, suggesting a novel therapeutic strategy to treat patients with KRAS G12C colorectal cancer. SIGNIFICANCE: The efficacy of KRASG12C inhibitors in NSCLC and colorectal cancer is lineage-specific. RTK dependency and signaling rebound kinetics are responsible for sensitivity or resistance to KRASG12C inhibition in colorectal cancer. EGFR and KRASG12C should be concomitantly inhibited to overcome resistance to KRASG12C blockade in colorectal tumors.See related commentary by Koleilat and Kwong, p. 1094.This article is highlighted in the In This Issue feature, p. 1079.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos SCID , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/farmacologia , Piridinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA