Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29656893

RESUMO

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Proteínas Mad2/antagonistas & inibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Biomed Sci ; 31(1): 26, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408992

RESUMO

BACKGROUND: Streptococcus pyogenes (group A streptococcus, GAS) causes a variety of diseases ranging from mild superficial infections of the throat and skin to severe invasive infections, such as necrotizing soft tissue infections (NSTIs). Tissue passage of GAS often results in mutations within the genes encoding for control of virulence (Cov)R/S two component system leading to a hyper-virulent phenotype. Dendritic cells (DCs) are innate immune sentinels specialized in antigen uptake and subsequent T cell priming. This study aimed to analyze cytokine release by DCs and other cells of monocytic origin in response to wild-type and natural covR/S mutant infections. METHODS: Human primary monocyte-derived (mo)DCs were used. DC maturation and release of pro-inflammatory cytokines in response to infections with wild-type and covR/S mutants were assessed via flow cytometry. Global proteome changes were assessed via mass spectrometry. As a proof-of-principle, cytokine release by human primary monocytes and macrophages was determined. RESULTS: In vitro infections of moDCs and other monocytic cells with natural GAS covR/S mutants resulted in reduced secretion of IL-8 and IL-18 as compared to wild-type infections. In contrast, moDC maturation remained unaffected. Inhibition of caspase-8 restored secretion of both molecules. Knock-out of streptolysin O in GAS strain with unaffected CovR/S even further elevated the IL-18 secretion by moDCs. Of 67 fully sequenced NSTI GAS isolates, 28 harbored mutations resulting in dysfunctional CovR/S. However, analyses of plasma IL-8 and IL-18 levels did not correlate with presence or absence of such mutations. CONCLUSIONS: Our data demonstrate that strains, which harbor covR/S mutations, interfere with IL-18 and IL-8 responses in monocytic cells by utilizing the caspase-8 axis. Future experiments aim to identify the underlying mechanism and consequences for NSTI patients.


Assuntos
Monócitos , Streptococcus pyogenes , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caspase 8 , Citocinas/genética , Interleucina-18/genética , Interleucina-8 , Monócitos/metabolismo , Streptococcus pyogenes/genética
3.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999014

RESUMO

3,4-bridged indoles are underrepresented among the vast number of indoles described in the literature. Attempts to access 3,4-macrocyclized indoles led to the unexpected formation of a novel tetracyclic indole through intramolecular acid-catalyzed ring contraction. The herein-established one-step synthetic route provides an excellent medicinal chemistry platform for the construction of screening libraries covering a unique chemical space of indoles.

4.
Angew Chem Int Ed Engl ; : e202404492, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948941

RESUMO

While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.

5.
Environ Microbiol ; 25(9): 1713-1727, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37121608

RESUMO

Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved ß-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.


Assuntos
Flavobacteriaceae , Xilanos , Xilanos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Polissacarídeos/metabolismo , Flavobacteriaceae/genética , Genômica
6.
Biol Chem ; 403(2): 151-194, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34433238

RESUMO

The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.


Assuntos
Lisina , Sirtuínas , Acetilação , Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Sirtuínas/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408828

RESUMO

(1) The serine protease inhibitor Kazal type 1 (SPINK1) inhibits trypsin activity in zymogen granules of pancreatic acinar cells. Several mutations in the SPINK1 gene are associated with acute recurrent pancreatitis (ARP) and chronic pancreatitis (CP). The most common variant is SPINK1 p.N34S. Although this mutation was identified two decades ago, the mechanism of action has remained elusive. (2) SPINK1 and human cationic trypsin (TRY1) were expressed in E. coli, and inhibitory activities were determined. Crystals of SPINK1-TRY1 complexes were grown by using the hanging-drop method, and phases were solved by molecular replacement. (3) Both SPINK1 variants show similar inhibitory behavior toward TRY1. The crystal structures are almost identical, with minor differences in the mutated loop. Both complexes show an unexpected rotamer conformation of the His63 residue in TRY1, which is a member of the catalytic triad. (4) The SPINK1 p.N34S mutation does not affect the inhibitory behavior or the overall structure of the protein. Therefore, the pathophysiological mechanism of action of the p.N34S variant cannot be explained mechanistically or structurally at the protein level. The observed histidine conformation is part of a mechanism for SPINK1 that can explain the exceptional proteolytic stability of this inhibitor.


Assuntos
Pancreatite Crônica , Inibidor da Tripsina Pancreática de Kazal , Escherichia coli , Predisposição Genética para Doença , Humanos , Mutação , Pancreatite Crônica/genética , Tripsina/genética , Inibidor da Tripsina Pancreática de Kazal/genética
8.
Hum Mol Genet ; 28(17): 2862-2873, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31087003

RESUMO

Gordon Holmes syndrome (GDHS) is an adult-onset neurodegenerative disorder characterized by ataxia and hypogonadotropic hypogonadism. GDHS is caused by mutations in the gene encoding the RING-between-RING (RBR)-type ubiquitin ligase RNF216, also known as TRIAD3. The molecular pathology of GDHS is not understood, although RNF216 has been reported to modify several substrates with K48-linked ubiquitin chains, thereby targeting them for proteasomal degradation. We identified RNF216 in a bioinformatical screen for putative SUMO-targeted ubiquitin ligases and confirmed that a cluster of predicted SUMO-interaction motifs (SIMs) indeed recognizes SUMO2 chains without targeting them for ubiquitination. Surprisingly, purified RNF216 turned out to be a highly active ubiquitin ligase that exclusively forms K63-linked ubiquitin chains, suggesting that the previously reported increase of K48-linked chains after RNF216 overexpression is an indirect effect. The linkage-determining region of RNF216 was mapped to a narrow window encompassing the last two Zn-fingers of the RBR triad, including a short C-terminal extension. Neither the SIMs nor a newly discovered ubiquitin-binding domain in the central portion of RNF216 contributes to chain specificity. Both missense mutations reported in GDHS patients completely abrogate the ubiquitin ligase activity. For the R660C mutation, ligase activity could be restored by using a chemical ubiquitin loading protocol that circumvents the requirement for ubiquitin-conjugating (E2) enzymes. This result suggests Arg-660 to be required for the ubiquitin transfer from the E2 to the catalytic cysteine. Our findings necessitate a re-evaluation of the previously assumed degradative role of RNF216 and rather argue for a non-degradative K63 ubiquitination, potentially acting on SUMOylated substrates.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Hipogonadismo/metabolismo , Mutação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Ativação Enzimática , Predisposição Genética para Doença , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Fosforilação , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitinação
9.
Angew Chem Int Ed Engl ; 60(4): 2013-2017, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33140887

RESUMO

Promiscuous acyltransferase activity is the ability of certain hydrolases to preferentially catalyze acyl transfer over hydrolysis, even in bulk water. However, poor enantioselectivity, low transfer efficiency, significant product hydrolysis, and limited substrate scope represent considerable drawbacks for their application. By activity-based screening of several hydrolases, we identified the family VIII carboxylesterase, EstCE1, as an unprecedentedly efficient acyltransferase. EstCE1 catalyzes the irreversible amidation and carbamoylation of amines in water, which enabled the synthesis of the drug moclobemide from methyl 4-chlorobenzoate and 4-(2-aminoethyl)morpholine (ca. 20 % conversion). We solved the crystal structure of EstCE1 and detailed structure-function analysis revealed a three-amino acid motif important for promiscuous acyltransferase activity. Introducing this motif into an esterase without acetyltransferase activity transformed a "hydrolase" into an "acyltransferase".


Assuntos
Aciltransferases/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/química , Catálise , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Estudo de Prova de Conceito , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Angew Chem Int Ed Engl ; 59(28): 11607-11612, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32243661

RESUMO

Certain hydrolases preferentially catalyze acyl transfer over hydrolysis in an aqueous environment. However, the molecular and structural reasons for this phenomenon are still unclear. Herein, we provide evidence that acyltransferase activity in esterases highly correlates with the hydrophobicity of the substrate-binding pocket. A hydrophobicity scoring system developed in this work allows accurate prediction of promiscuous acyltransferase activity solely from the amino acid sequence of the cap domain. This concept was experimentally verified by systematic investigation of several homologous esterases, leading to the discovery of five novel promiscuous acyltransferases. We also developed a simple yet versatile colorimetric assay for rapid characterization of novel acyltransferases. This study demonstrates that promiscuous acyltransferase activity is not as rare as previously thought and provides access to a vast number of novel acyltransferases with diverse substrate specificity and potential applications.


Assuntos
Aciltransferases/metabolismo , Hidrolases/metabolismo , Aciltransferases/química , Sequência de Aminoácidos , Catálise , Ensaios de Triagem em Larga Escala , Hidrolases/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas
11.
J Biol Chem ; 292(11): 4446-4456, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154176

RESUMO

The KRAS GTPase plays a critical role in the control of cellular growth. The activity of KRAS is regulated by guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and also post-translational modification. Lysine 104 in KRAS can be modified by ubiquitylation and acetylation, but the role of this residue in intrinsic KRAS function has not been well characterized. We find that lysine 104 is important for GEF recognition, because mutations at this position impaired GEF-mediated nucleotide exchange. Because the KRAS K104Q mutant has recently been employed as an acetylation mimetic, we conducted a series of studies to evaluate its in vitro and cell-based properties. Herein, we found that KRAS K104Q exhibited defects in both GEF-mediated exchange and GAP-mediated GTP hydrolysis, consistent with NMR-detected structural perturbations in localized regions of KRAS important for recognition of these regulatory proteins. Despite the partial defect in both GEF and GAP regulation, KRAS K104Q did not alter steady-state GTP-bound levels or the ability of the oncogenic KRAS G12V mutant to cause morphologic transformation of NIH 3T3 mouse fibroblasts and of WT KRAS to rescue the growth defect of mouse embryonic fibroblasts deficient in all Ras genes. We conclude that the KRAS K104Q mutant retains both WT and mutant KRAS function, probably due to offsetting defects in recognition of factors that up-regulate (GEF) and down-regulate (GAP) RAS activity.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Mutação de Sentido Incorreto , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Células Cultivadas , Humanos , Hidrólise , Camundongos , Modelos Moleculares , Células NIH 3T3 , Mutação Puntual , Conformação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 112(28): E3679-88, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124124

RESUMO

Ran is a small GTP-binding protein of the Ras superfamily regulating fundamental cellular processes: nucleo-cytoplasmic transport, nuclear envelope formation and mitotic spindle assembly. An intracellular Ran•GTP/Ran•GDP gradient created by the distinct subcellular localization of its regulators RCC1 and RanGAP mediates many of its cellular effects. Recent proteomic screens identified five Ran lysine acetylation sites in human and eleven sites in mouse/rat tissues. Some of these sites are located in functionally highly important regions such as switch I and switch II. Here, we show that lysine acetylation interferes with essential aspects of Ran function: nucleotide exchange and hydrolysis, subcellular Ran localization, GTP hydrolysis, and the interaction with import and export receptors. Deacetylation activity of certain sirtuins was detected for two Ran acetylation sites in vitro. Moreover, Ran was acetylated by CBP/p300 and Tip60 in vitro and on transferase overexpression in vivo. Overall, this study addresses many important challenges of the acetylome field, which will be discussed.


Assuntos
Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteína ran de Ligação ao GTP/fisiologia , Acetilação , Animais , Catálise , Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Ligação Proteica , Ratos , Sirtuínas/metabolismo , Proteína ran de Ligação ao GTP/química , Proteína ran de Ligação ao GTP/metabolismo
13.
J Biol Chem ; 291(28): 14677-94, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27226597

RESUMO

Sirtuins are NAD(+)-dependent lysine deacylases, regulating a variety of cellular processes. The nuclear Sirt1, the cytosolic Sirt2, and the mitochondrial Sirt3 are robust deacetylases, whereas the other sirtuins have preferences for longer acyl chains. Most previous studies investigated sirtuin-catalyzed deacylation on peptide substrates only. We used the genetic code expansion concept to produce natively folded, site-specific, and lysine-acetylated Sirt1-3 substrate proteins, namely Ras-related nuclear, p53, PEPCK1, superoxide dismutase, cyclophilin D, and Hsp10, and analyzed the deacetylation reaction. Some acetylated proteins such as Ras-related nuclear, p53, and Hsp10 were robustly deacetylated by Sirt1-3. However, other reported sirtuin substrate proteins such as cyclophilin D, superoxide dismutase, and PEPCK1 were not deacetylated. Using a structural and functional approach, we describe the ability of Sirt1-3 to deacetylate two adjacent acetylated lysine residues. The dynamics of this process have implications for the lifetime of acetyl modifications on di-lysine acetylation sites and thus constitute a new mechanism for the regulation of proteins by acetylation. Our studies support that, besides the primary sequence context, the protein structure is a major determinant of sirtuin substrate specificity.


Assuntos
Lisina/metabolismo , Sirtuínas/metabolismo , Acetilação , Sequência de Aminoácidos , Calorimetria , Cristalização , Peptídeos/química , Peptídeos/metabolismo , Dobramento de Proteína , Especificidade por Substrato
14.
J Biol Chem ; 291(11): 5484-5499, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26719334

RESUMO

Rho proteins are small GTP/GDP-binding proteins primarily involved in cytoskeleton regulation. Their GTP/GDP cycle is often tightly connected to a membrane/cytosol cycle regulated by the Rho guanine nucleotide dissociation inhibitor α (RhoGDIα). RhoGDIα has been regarded as a housekeeping regulator essential to control homeostasis of Rho proteins. Recent proteomic screens showed that RhoGDIα is extensively lysine-acetylated. Here, we present the first comprehensive structural and mechanistic study to show how RhoGDIα function is regulated by lysine acetylation. We discover that lysine acetylation impairs Rho protein binding and increases guanine nucleotide exchange factor-catalyzed nucleotide exchange on RhoA, these two functions being prerequisites to constitute a bona fide GDI displacement factor. RhoGDIα acetylation interferes with Rho signaling, resulting in alteration of cellular filamentous actin. Finally, we discover that RhoGDIα is endogenously acetylated in mammalian cells, and we identify CBP, p300, and pCAF as RhoGDIα-acetyltransferases and Sirt2 and HDAC6 as specific deacetylases, showing the biological significance of this post-translational modification.


Assuntos
Lisina/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Acetilação , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Cristalografia por Raios X , Nucleotídeos de Guanina/metabolismo , Células HEK293 , Células HeLa , Desacetilase 6 de Histona , Histona Desacetilases/metabolismo , Humanos , Modelos Moleculares , Sirtuína 2/metabolismo , Sumoilação , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/análise , Proteína rhoA de Ligação ao GTP/química
15.
Biochemistry ; 55(2): 304-12, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26695096

RESUMO

Rho proteins are major regulators of the cytoskeleton. As most Ras-related proteins, they switch between an active, GTP-bound and an inactive, GDP-bound conformation. Rho proteins are targeted to the plasma membrane via a polybasic region and a prenyl group attached to a C-terminal cysteine residue. To distribute Rho proteins in the cell, the molecular chaperone RhoGDIα binds to the prenylated Rho proteins forming a cytosolic pool of mainly GDP-loaded Rho. Most studies characterized the interaction of prenylated Rho proteins and RhoGDIα. However, RhoGDIα was also shown to bind to nonprenylated Rho proteins with physiologically relevant micomolar affinities. Recently, it was discovered that RhoGDIα is targeted by post-translational lysine acetylation. For one site, K141, it was hypothesized that acetylation might lead to increased levels of formation of filamentous actin and filopodia in mammalian cells. The functional consequences of lysine acetylation for the interplay with nonprenylated RhoA have not been investigated. Here, we report that lysine acetylation at lysines K127 and K141 in the RhoGDIα immunoglobulin domain interferes with the interaction toward nonprenylated RhoA using a combined biochemical and biophysical approach. We determined the first crystal structure of a doubly acetylated protein, RhoGDIα, in complex with RhoA·GDP. We discover that the C-terminus of RhoA adopts a different conformation forming an intermolecular ß-sheet with the RhoGDIα immunoglobulin domain.


Assuntos
Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Acetilação , Animais , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Termodinâmica , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo , Inibidor alfa de Dissociação do Nucleotídeo Guanina rho/química , Proteína rhoA de Ligação ao GTP/química
16.
J Biol Chem ; 290(23): 14314-27, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25911102

RESUMO

Diaphanous-related formins are eukaryotic actin nucleation factors regulated by an autoinhibitory interaction between the N-terminal RhoGTPase-binding domain (mDiaN) and the C-terminal Diaphanous-autoregulatory domain (DAD). Although the activation of formins by Rho proteins is well characterized, its inactivation is only marginally understood. Recently, liprin-α3 was shown to interact with mDia1. Overexpression of liprin-α3 resulted in a reduction of the cellular actin filament content. The molecular mechanisms of how liprin-α3 exerts this effect and counteracts mDia1 activation by RhoA are unknown. Here, we functionally and structurally define a minimal liprin-α3 core region, sufficient to recapitulate the liprin-α3 determined mDia1-respective cellular functions. We show that liprin-α3 alters the interaction kinetics and thermodynamics of mDiaN with RhoA·GTP and DAD. RhoA displaces liprin-α3 allosterically, whereas DAD competes with liprin-α3 for a highly overlapping binding site on mDiaN. Liprin-α3 regulates actin polymerization by lowering the regulatory potency of RhoA and DAD on mDiaN. We present a model of a mechanistically unexplored and new aspect of mDiaN regulation by liprin-α3.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Cristalografia por Raios X , Forminas , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas de Transporte Vesicular/química , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Biol Chem ; 397(10): 1071-85, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27176741

RESUMO

Ras is a molecular switch cycling between an active, GTP-bound and an inactive, GDP-bound state. Mutations in Ras, mostly affecting the off-switch, are found in many human tumours. Recently, it has been shown that K-Ras 4B is targeted by lysine acetylation at K104. Based on results obtained for an acetylation mimetic Ras mutant (K104Q), it was hypothesised that K104-acetylation might interfere with its oncogenicity by impairing SOS-catalysed guanine-nucleotide exchange. We prepared site-specifically K104-acetylated K-Ras 4B and the corresponding oncogenic mutant protein G12V using the genetic-code expansion concept. We found that SOS-catalysed nucleotide exchange, also of allosterically activated SOS, was neither affected by acetylation of K104 in wildtype K-Ras 4B nor in the G12V mutant, suggesting that glutamine is a poor mimetic for acetylation at this site. In vitro, the lysine-acetyltransferases CBP and p300 were able to acetylate both, wildtype and G12V K-Ras 4B. In addition to K104 we identified further acetylation sites in K-Ras 4B, including K147, within the important G5/SAK-motif. However, the intrinsic and the SOS-catalysed nucleotide exchange was not affected by K147-acetylation of K-Ras 4B. Finally, we show that Sirt2 and HDAC6 do neither deacetylate K-Ras 4B if acetylated at K104 nor if acetylated at K147 in vitro.


Assuntos
Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Acetilação , Regulação Alostérica , Sequência de Aminoácidos , Animais , Biocatálise , Humanos , Modelos Moleculares , Mutação , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Son Of Sevenless/metabolismo
18.
Nat Commun ; 15(1): 6002, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019872

RESUMO

The AMP-forming acetyl-CoA synthetase is regulated by lysine acetylation both in bacteria and eukaryotes. However, the underlying mechanism is poorly understood. The Bacillus subtilis acetyltransferase AcuA and the AMP-forming acetyl-CoA synthetase AcsA form an AcuA•AcsA complex, dissociating upon lysine acetylation of AcsA by AcuA. Crystal structures of AcsA from Chloroflexota bacterium in the apo form and in complex with acetyl-adenosine-5'-monophosphate (acetyl-AMP) support the flexible C-terminal domain adopting different conformations. AlphaFold2 predictions suggest binding of AcuA stabilizes AcsA in an undescribed conformation. We show the AcuA•AcsA complex dissociates upon acetyl-coenzyme A (acetyl-CoA) dependent acetylation of AcsA by AcuA. We discover an intrinsic phosphotransacetylase activity enabling AcuA•AcsA generating acetyl-CoA from acetyl-phosphate (AcP) and coenzyme A (CoA) used by AcuA to acetylate and inactivate AcsA. Here, we provide mechanistic insights into the regulation of AMP-forming acetyl-CoA synthetases by lysine acetylation and discover an intrinsic phosphotransacetylase allowing modulation of its activity based on AcP and CoA levels.


Assuntos
Acetato-CoA Ligase , Acetilcoenzima A , Bacillus subtilis , Proteínas de Bactérias , Lisina , Acetilação , Lisina/metabolismo , Acetilcoenzima A/metabolismo , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/química , Bacillus subtilis/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Monofosfato de Adenosina/metabolismo , Organofosfatos
19.
Nat Commun ; 15(1): 1674, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395951

RESUMO

The Escherichia coli TetR-related transcriptional regulator RutR is involved in the coordination of pyrimidine and purine metabolism. Here we report that lysine acetylation modulates RutR function. Applying the genetic code expansion concept, we produced site-specifically lysine-acetylated RutR proteins. The crystal structure of lysine-acetylated RutR reveals how acetylation switches off RutR-DNA-binding. We apply the genetic code expansion concept in E. coli in vivo revealing the consequences of RutR acetylation on the transcriptional level. We propose a model in which RutR acetylation follows different kinetic profiles either reacting non-enzymatically with acetyl-phosphate or enzymatically catalysed by the lysine acetyltransferases PatZ/YfiQ and YiaC. The NAD+-dependent sirtuin deacetylase CobB reverses enzymatic and non-enzymatic acetylation of RutR playing a dual regulatory and detoxifying role. By detecting cellular acetyl-CoA, NAD+ and acetyl-phosphate, bacteria apply lysine acetylation of transcriptional regulators to sense the cellular metabolic state directly adjusting gene expression to changing environmental conditions.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Acetilação , NAD/metabolismo , Expressão Gênica , Fosfatos/metabolismo
20.
Nat Chem Biol ; 6(5): 331-7, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20364129

RESUMO

Cyclophilin A (CypA) is a ubiquitous cis-trans prolyl isomerase with key roles in immunity and viral infection. CypA suppresses T-cell activation through cyclosporine complexation and is required for effective HIV-1 replication in host cells. We show that CypA is acetylated in diverse human cell lines and use a synthetically evolved acetyllysyl-tRNA synthetase/tRNA(CUA) pair to produce recombinant acetylated CypA in Escherichia coli. We determined atomic-resolution structures of acetylated CypA and its complexes with cyclosporine and HIV-1 capsid. Acetylation markedly inhibited CypA catalysis of cis to trans isomerization and stabilized cis rather than trans forms of the HIV-1 capsid. Furthermore, CypA acetylation antagonized the immunosuppressive effects of cyclosporine by inhibiting the sequential steps of cyclosporine binding and calcineurin inhibition. Our results reveal that acetylation regulates key functions of CypA in immunity and viral infection and provide a general set of mechanisms by which acetylation modulates interactions to regulate cell function.


Assuntos
Ciclofilina A/metabolismo , HIV-1/fisiologia , Terapia de Imunossupressão , Acetilação , Biocatálise , Inibidores de Calcineurina , Linhagem Celular , Ciclosporina/metabolismo , Humanos , Isomerismo , Modelos Moleculares , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA