Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 105(3): 607-615, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32830595

RESUMO

Rice black-streaked dwarf disease caused by Rice black-streaked dwarf virus (RBSDV) is one of the most destructive viral diseases of rice. Thus, it is imperative that resistant rice germplasms are screened for novel RBSDV-resistant genes. RBSDV resistance of a diverse global collection comprising 1,953 rice accessions was evaluated under natural conditions across 3 years. The average disease incidences of the Xian/indica (XI) subgroup were significantly lower than those of the Geng/japonica (GJ) subgroup. Interestingly, most XI-1A accessions in the Xian subgroup were significantly more susceptible than XI-1B accessions, even though XI-1A and XI-1B have a close phylogenetic relationship. Four Xian accessions stably and highly resistant to RBSDV were consistently identified in 2 years. Ten genomic regions (GRs) with 147 single nucleotide polymorphisms associated with RBSDV resistance were detected by a single-locus genome-wide association study (GWAS), of which five were repeatedly identified in a multilocus GWAS. Two previously reported GRs, grRBSDV-6.1 and grRBSDV-6.3, which were repeatedly detected as stably and highly associated with RBSDV resistance, contained 17 and seven genes, respectively, with significant differences of resistance among haplotypes. Haplotype analyses of the candidate genes LOC_Os06g03150 in grRBSDV-6.1 and LOC_Os06g31190 in grRBSDV-6.3 suggested that the former gene is mainly associated with the differentiation of resistance within the Xian subgroup and the latter gene mainly explains the difference in the resistance between Xian and Geng. Another three novel resistance GRs (grRBSDV-1.1, grRBSDV-7.1, and grRBSDV-9.1) were identified. Our findings may enhance the application of disease-resistant rice germplasms for breeding RBSDV-resistant varieties.


Assuntos
Oryza , Reoviridae , Estudo de Associação Genômica Ampla , Oryza/genética , Filogenia , Melhoramento Vegetal , Doenças das Plantas/genética , Reoviridae/genética
2.
Front Plant Sci ; 7: 1585, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822223

RESUMO

Cleistogamous and chasmogamous are two opposing phenomena for flowering in barley. Cleistogamy limits the rate of outcrossing, and increases the cost of producing hybrid barley seeds. Selecting chasmogamous lines with a large glume opening angle (GOA) is essential for the utilization of barley heterosis. In the current study, 247 DH lines derived from a cross between Yangnongpi7 and Yang0187 were used to identify and validate quantitative trait loci (QTLs) associated with the GOA in different environments using SSR markers. Three QTLs associated with barley GOA were mapped on chromosomes 2H and 7H. The major QTL QGOA-2H-2 was mapped on chromosome 2H with the flanking markers of KDH and GBM1498, explaining 63.92% of the phenotypic variation. The marker KDH was developed from the gene Cly1, which was the candidate gene for QGOA-2H-2. This new marker can be used to identify barley chasmogamous lines with a large GOA. The two minor QTLs were validated at all three locations across two seasons after removing DH lines carrying the candidate gene Cly1 of QGOA-2H-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA