Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Plant J ; 118(3): 802-822, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38305492

RESUMO

Floral patterns are unique to rice and contribute significantly to its reproductive success. SL1 encodes a C2H2 transcription factor that plays a critical role in flower development in rice, but the molecular mechanism regulated by it remains poorly understood. Here, we describe interactions of the SL1 with floral homeotic genes, SPW1, and DL in specifying floral organ identities and floral meristem fate. First, the sl1 spw1 double mutant exhibited a stamen-to-pistil transition similar to that of sl1, spw1, suggesting that SL1 and SPW1 may located in the same pathway regulating stamen development. Expression analysis revealed that SL1 is located upstream of SPW1 to maintain its high level of expression and that SPW1, in turn, activates the B-class genes OsMADS2 and OsMADS4 to suppress DL expression indirectly. Secondly, sl1 dl displayed a severe loss of floral meristem determinacy and produced amorphous tissues in the third/fourth whorl. Expression analysis revealed that the meristem identity gene OSH1 was ectopically expressed in sl1 dl in the fourth whorl, suggesting that SL1 and DL synergistically terminate the floral meristem fate. Another meristem identity gene, FON1, was significantly decreased in expression in sl1 background mutants, suggesting that SL1 may directly activate its expression to regulate floral meristem fate. Finally, molecular evidence supported the direct genomic binding of SL1 to SPW1 and FON1 and the subsequent activation of their expression. In conclusion, we present a model to illustrate the roles of SL1, SPW1, and DL in floral organ specification and regulation of floral meristem fate in rice.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Meristema , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Mutação
2.
Chem Biodivers ; 21(5): e202400210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38433548

RESUMO

Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.


Assuntos
Elipticinas , Elipticinas/farmacologia , Elipticinas/química , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Estrutura Molecular , Animais , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação
3.
Bioorg Med Chem ; 82: 117234, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906964

RESUMO

Cancer with low survival rates is the second main cause of death among all diseases in the world and consequently, effective antineoplastic agents are urgently needed. Allosecurinine is a plant-derived indolicidine securinega alkaloid shown bioactivity. The object of this study is to investigate synthetic allosecurinine derivatives with considerable anticancer capacity against nine human cancer cell lines as well as mechanism of action. We synthesized twenty-three novel allosecurinine derivatives and evaluated their antitumor activity against nine cancer cell lines for 72 h by MTT and CCK8 assays. FCM was applied to analyze the apoptosis, mitochondrial membrane potential, DNA content, ROS production, CD11b expression. Western blot was selected to analyze the protein expression. Structure-activity relationships were established and potential anticancer lead BA-3 which induced differentiation of leukemia cells towards granulocytosis at low concentration and apoptosis at high concentration was identified. Mechanism studies showed that mitochondrial pathway mediated apoptosis within cancer cells with cell cycle blocking was induced by BA-3. In addition, western blot assays revealed that BA-3 induced expression of the proapoptotic factor Bax, p21 and reduced the levels of antiapoptotic protein such as Bcl-2, XIAP, YAP1, PARP, STAT3, p-STAT3, and c-Myc. Collectively, BA-3 was a lead compound for oncotherapy at least in part, through the STAT3 pathway. These results were an important step in further studies on allosecurinine-based antitumor agent development.


Assuntos
Alcaloides , Antineoplásicos , Compostos Heterocíclicos de Anel em Ponte , Neoplasias , Humanos , Antineoplásicos/farmacologia , Azepinas/farmacologia , Compostos Heterocíclicos de Anel em Ponte/farmacologia , Lactonas/farmacologia , Apoptose , Alcaloides/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral
4.
Molecules ; 28(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067601

RESUMO

Natural products are treasure houses for modern drug discovery. Diphyllin is a natural arylnaphthalene lignan lactone isolated from the leaf of Astilboides tabularis. Studies have found that it possesses plenty of bioactivity characteristics. In this paper, we reviewed the structure, bioactivity, and mechanism of action of diphyllin and its derivatives. The references were obtained from PubMed, Web of Science, and Science Direct databases up to August 2023. Papers without a bio-evaluation were excluded. Diphyllin and its derivatives have demonstrated V-ATPase inhibition, anti-tumor, anti-virus, anti-biofilm, anti-inflammatory, and anti-oxidant activities. The most studied activities of diphyllin and its derivatives are V-ATPase inhibition, anti-tumor activities, and anti-virus activities. Furthermore, V-ATPase inhibition activity is the mechanism of many bioactivities, including anti-tumor, anti-virus, and anti-inflammatory activities. We also found that the galactosylated modification of diphyllin is a common phenomenon in plants, and therefore, galactosylated modification is applied by researchers in the laboratory to obtain more excellent diphyllin derivatives. This review will provide useful information for the development of diphyllin-based anti-tumor and anti-virus compounds.


Assuntos
Lignanas , Adenosina Trifosfatases , Anti-Inflamatórios/farmacologia , Lactonas , Lignanas/farmacologia , Lignanas/química
5.
J Cell Mol Med ; 26(9): 2673-2685, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35322916

RESUMO

TRIP13 is a member of the large superfamily of the AAA + ATPase proteins and is associated with a variety of activities. Emerging evidence has shown that TRIP13 may serve as an oncogene. However, the function of TRIP13 in breast cancer (BC) has not yet been elucidated. Here, a variety of bioinformatic tools and laboratory experiments were combined to analyse the expression patterns, prognostic value and functional network of TRIP13 in BC. Multiple databases and immunohistochemistry (IHC) indicated a higher TRIP13 expression in BC tissue compared with normal tissue. TRIP13 was highly expressed in lung metastatic lesions compared with primary tumours in a 4T1 cell implantation BALB/c mouse model of BC. Kaplan-Meier plots also revealed that high TRIP13 expression correlated with poor survival in patients with BC. Furthermore, gene set enrichment analysis revealed that TRIP13 was primarily enriched in the signalling pathway of PI3K-AKT-mTOR. Suppressing TRIP13 could inhibit the expression of related genes, as well as the proliferation and migration of BC cell. Finally, 10 hub genes with a high score of connectivity were filtered from the protein-protein interaction (PPI) network, including MAD2L1, CDC20, CDC5L, CDK1, CCNA2, BUB1B, RAD51, SPO11, KIF11 and AURKB. Thus, TRIP13 may be a promising prognostic biomarker and an effective therapeutic target for BC.


Assuntos
Neoplasias da Mama , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética
6.
Anim Genet ; 53(3): 317-326, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35292981

RESUMO

The melanocortin 1 receptor (MC1R), encoded by the classical extension (E) coat color locus, is expressed on the surface of melanocytes and plays a critical role in switching melanin synthesis from pheomelanin (red/yellow) to eumelanin (black/brown). Different MC1R alleles associated with various coat color patterns in pigs have been identified over the past decades. However, functional analysis of variant porcine MC1R alleles has not yet been performed. Therefore, in this study, we examined the subcellular localization and cyclic adenosine monophosphate (cAMP) signaling capability of MC1R variants in porcine kidney epithelial cells (PK15) overexpressing different MC1R alleles. Transcriptional slippage may partially restore the reading frame of the EP allele, possibly accounting for the observed spot phenotype. The A243T substitution in the e allele severely disrupted the membrane localization of the MC1R receptor, resulting in a severely impaired cAMP signaling capability. Both the V95M and L102P substitutions in the ED1 allele may contribute to the constitutively active function of MC1R, thus accounting for the dominant black phenotype. The D124N substitution in the ED2 allele severely attenuated the cAMP signaling capability of MC1R; however, whether this mutation contributes to the distinct phenotype of Hampshire pigs requires further investigation. Thus, our results provide new insights into the functional characteristics of MC1R variants and their roles in porcine coat color formation.


Assuntos
Mutação de Sentido Incorreto , Receptor Tipo 1 de Melanocortina , Alelos , Animais , Cor de Cabelo , Mutação , Fenótipo , Receptor Tipo 1 de Melanocortina/genética , Suínos/genética
7.
Pharm Biol ; 60(1): 2201-2209, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36373992

RESUMO

CONTEXT: Ganoderma lucidum polysaccharides (GLP), from Ganoderma lucidum (Leyss. ex Fr.) Karst. (Ganodermataceae), are reported to have anti-inflammatory effects, including anti-neuroinflammation and anti-colitis. Nevertheless, the role of GLP in acute pneumonia is unknown. OBJECTIVE: To explore the protective role of GLP against LPS-induced acute pneumonia and investigate possible mechanisms. MATERIALS AND METHODS: GLP were extracted and used for high-performance liquid chromatography (HPLC) analysis after acid hydrolysis and PMP derivatization. Sixty C57BL/6N male mice were randomly divided into six groups: Sham, Model, LPS + GLP (25, 50 and 100 mg/kg/d administered intragastrically for two weeks) and LPS + dexamethasone (6 mg/kg/d injected intraperitoneally for one week). Acute pneumonia mouse models were established by intratracheal injection of LPS. Haematoxylin and eosin (H&E) staining was examined to evaluate lung lesions. ELISA and quantitative real-time PCR were employed to assess inflammatory factors expression. Western blots were carried out to measure Neuropilin-1 expression and proteins related to apoptosis and autophagy. RESULTS: GLP suppressed inflammatory cell infiltration. In BALF, cell counts were 1.1 × 106 (model) and 7.1 × 105 (100 mg/kg). Release of GM-CSF and IL-6 was reduced with GLP (25, 50 and 100 mg/kg) treatment. The expression of genes IL-1ß, IL-6, TNF-α and Saa3 was reduced. GLP treatment also suppressed the activation of Neuropilin-1 (NRP1), upregulated the levels of Bcl2/Bax and LC3 and led to downregulation of the ratio C-Caspase 3/Caspase 3 and P62 expression. DISCUSSION AND CONCLUSIONS: GLP could protect against LPS-induced acute pneumonia through multiple mechanisms: blocking the infiltration of inflammatory cells, inhibiting cytokine secretion, suppressing NRP1 activation and regulating pneumonocyte apoptosis and autophagy.


Assuntos
Pneumonia , Reishi , Animais , Masculino , Camundongos , Caspase 3 , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Neuropilina-1 , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Pneumonia/prevenção & controle , Polissacarídeos/farmacologia , Reishi/química
8.
Arch Microbiol ; 203(6): 3623-3632, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33983489

RESUMO

Leaf spot (Pestalotiopsis microspora) is one of the major fungal diseases in blueberry (Vaccinium corymbosum L.) production and if not treated promptly that can eventually lead to plant death. To prevent and control leaf spot effectively, we selected BABA (beta-aminobutyric acid) as an inducer, "Canlan" in blueberries of rabbit eyes varieties as experimental material and then induced and inoculated leaf spot on blueberries as an experimental group and used uninduced blueberries inoculated with leaf spot as the control group. A transcriptome sequencing library was built, allowing identification of disease resistance and transcriptome analysis. The results showed that the resistance of blueberry to leaf spot was significantly increased after induction by BABA, which can increase the activity of the enzymes PPO, POD, PAL and and ß-1,3-glucanase in blueberry leaves, inducing disease resistance of blueberries to leaf spot. Transcriptome sequencing results showed that there are 3953 genes participating in the processing of disease in KEGG metabolic pathways. Among the transcripts annotated to diseases, 1115 were involved in plant-pathogen interactions and 35 were involved in anthocyanin synthesis. Differential expression results showed that there were 900 upregulated differential genes and 531 downregulated differential genes, there were 70 genes highly expressed in the library. The results of Blast2PHI database revealed that among the genes related to leaf spot disease in blueberry, there were 727 transcription factors, 200 involved in disease prevention, 45 associated with cell circulation, effector proteins and 7 pathogenic genes controlling the biosynthesis of a-(1,3)-glucan.


Assuntos
Aminobutiratos/farmacologia , Mirtilos Azuis (Planta)/genética , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Animais , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/prevenção & controle , Folhas de Planta/genética , Coelhos
9.
Inorg Chem ; 60(18): 14286-14293, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34503326

RESUMO

Stimuli-responsive functional materials, especially the light stimulation color change and tunable fluorescent materials, have received considerable attention because of their broad applications in smart materials. Herein, a series of lanthanide-based [Ln = Nd(III) (1), Sm(III) (2), Eu(III) (3), Gd(III) (4), Tb(III) (5), Yb(III) (6), and Lu(III) (7)] crystalline complexes were attained by simply adding the aqueous lanthanide nitrate solution to the water-soluble naphthalenediimide derivative. The obtained lanthanide-based crystalline materials not only show significant photochromism but also possess reactive organic radicals under ambient conditions. Intriguingly, photoswitchable near-infrared (NIR) fluorescence was realized in the crystalline complex 1. The structures of these crystalline materials were systematically studied to clarify the weak interaction-assisted charge-transfer process. The underlying multiple-interaction-assisted supramolecular self-assembly, the radical-doped nature, and the corresponding photochromic mechanism were thoroughly unearthed by single-crystal X-ray diffraction, in situ solid-state UV-vis diffuse reflectance, and electron paramagnetic resonance spectrometric analysis.

10.
Org Biomol Chem ; 19(11): 2436-2441, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33406170

RESUMO

This is the first report on a facile tandem route for synthesizing quinazolinones at room temperature from various aminobenzamides and in situ-generated aldehydes. The latter was formed via C[double bond, length as m-dash]C bond cleavage, and the overall reaction proceeded using molecular oxygen as a clean oxidant in the absence of a photocatalyst. Visible light, which was indispensable for the entire course of the reaction, played multiple roles. It initially cleaved styrene to an aldehyde, then facilitated its cyclization with an o-substituted aniline, and finally promoted the dehydrogenation of the cyclized intermediate. The previous step provided the feedstock for the next step in the reaction, thereby preventing volatilization, oxidation, and polymerization of the aldehyde. Thus, the overall process is simple, environmentally benign, and economically feasible.

11.
Bioorg Chem ; 109: 104685, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33640631

RESUMO

The monoamine oxidase-B (MAO-B) inhibitors with neuroprotective effects are better for Parkinson's disease (PD) treatment, due to the complicated pathogenesis of PD. To develop new hMAO-B inhibitors with neuroprotection, a novel series of 3,4-dihydrocoumarins was designed as selective and reversible hMAO-B inhibitors to treat PD. Most compounds showed potent and selective inhibition for hMAO-B over hMAO-A with IC50 values ranging from nanomolar to sub-nanomolar. Among them, compound 4d was the most potent hMAO-B inhibitor (IC50 = 0.37 nM) being about 20783-fold more active than iproniazid, and exhibited the highest selectivity for hMAO-B (SI > 270,270). Kinetic studies revealed that compound 4d was a reversible and competitive inhibitor of hMAO-B. Neuroprotective studies indicated that compound 4d could protect PC12 cells from the damage induced by 6-OHDA and rotenone. Besides, compound 4d did not exhibit acute toxicity at a dose up to 2500 mg/kg (po), and could cross the BBB in parallel artificial membrane permeability assay. More importantly, compound 4d was able to significantly prevent the motor deficits in the MPTP-induced PD model. These results indicate that compound 4d is an effective and promising candidate against PD.


Assuntos
Cumarínicos/química , Desenho de Fármacos , Intoxicação por MPTP/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Animais , Indanos/farmacologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/química , Oxidopamina/toxicidade , Células PC12 , Conformação Proteica , Ratos , Rotenona/toxicidade , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948302

RESUMO

Calmodulin-binding protein 60 (CBP60) members constitute a plant-specific protein family that plays an important role in plant growth and development. In the soybean genome, nineteen CBP60 members were identified and analyzed for their corresponding sequences and structures to explore their functions. Among GmCBP60A-1, which primarily locates in the cytomembrane, was significantly induced by drought and salt stresses. The overexpression of GmCBP60A-1 enhanced drought and salt tolerance in Arabidopsis, which showed better state in the germination of seeds and the root growth of seedlings. In the soybean hairy roots experiment, the overexpression of GmCBP60A-1 increased proline content, lowered water loss rate and malondialdehyde (MDA) content, all of which likely enhanced the drought and salt tolerance of soybean seedlings. Under stress conditions, drought and salt response-related genes showed significant differences in expression in hairy root soybean plants of GmCBP60A-1-overexpressing and hairy root soybean plants of RNAi. The present study identified GmCBP60A-1 as an important gene in response to salt and drought stresses based on the functional analysis of this gene and its potential underlying mechanisms in soybean stress-tolerance.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Glycine max/genética , Proteínas de Plantas/genética , Estresse Salino/genética , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Plântula/genética , Sementes/genética , Proteínas de Soja/genética , Estresse Fisiológico/genética
13.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5253-5259, 2021 Oct.
Artigo em Zh | MEDLINE | ID: mdl-34738427

RESUMO

As a local variety of medicinal material, Citri Trifoliatae Fructus is widely used in many places, whereas its harvest time remains unclear. Therefore, studying its harvest time can make more reasonable use of this medicinal material. In this study, we determined the flavonoids content and compared the color of Citri Trifoliatae Fructus harvested in different time, aiming to guide the harvest of this medicinal material. The fresh fruits of Citrus trifoliata were collected from Xinxiang city, Henan province, graded according to the diameter range, and then dried. The contents of isonaringin, naringen, and poncirin in Citri Trifoliatae Fructus were determined by HPLC, and the color values of the samples were detected by electronic eye. The correlation analysis of the obtained data was carried out to explore the relationships of color and diameter with quality. The results showed that the contents of isonaringin, naringen, and poncirin varied significantly in different harvest time, within the ranges of 0.21-1.20, 2.21-11.59, and 3.73-23.16 mg·g~(-1), respectively. With the delay of harvest time, Citri Trifoliatae Fructus showed the color changing from green to yellow, gradually increased diameter, and gradually decreased contents of isonaringin, naringen, and poncirin. The contents of isonaringin, naringen, and poncirin were negatively correlated with the degree of red and green(a~*) and positively correlated with the degree of yellow and blue(b~*). The contents of naringen and poncirin had significantly negative correlations with the diameter. This study indicates that the quality of Citri Trifoliatae Fructus can be judged by its diameter and skin color, which provides a theoretical basis for the rational harvest of this medicinal material.


Assuntos
Citrus , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Eletrônica , Frutas , Tecnologia
14.
Bioorg Chem ; 101: 103949, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531507

RESUMO

A one-pot efficient biocatalytic strategy for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones was developed in a circulating microwave reactor selecting α-chymotrypsin as the promiscuous biocatalyst. In the circulating reaction system, the combination of microwave heating and external cooling could avoid the denaturation and inactivation of enzyme, and greatly improved the radiation power of microwave, thus improving the specific effects of microwave. During the reaction process, the microwave radiation power was automatically adjusted by adjusting the speed of the reaction mixture circulation. When the microwave power was maintained at 110 W, the best results could be obtained with the highest yield of 96% at 55 °C in 50 min, and the reaction had a wide range of substrates. But no obvious product was detected in a tank microwave reactor at 55 °C for 100 min, under this condition, the microwave power was maintained at about 3 W. As a contrast, the reaction only obtained 63% yield in 55 °C oil bath for 96 h.


Assuntos
Reatores Biológicos , Micro-Ondas , Animais , Biocatálise , Bovinos , Quimotripsina/metabolismo
15.
Bioorg Chem ; 94: 103413, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31791679

RESUMO

A series of new ferulic acid derivatives were designed, synthesized and evaluated as multi-target inhibitors against Alzheimer's disease. In vitro studies indicated that most compounds showed significant potency to inhibit self-induced ß-amyloid (Aß) aggregation and acetylcholinesterase (AChE), and had good antioxidant activity. Specifically, compound 4g exhibited the potent ability to inhibit cholinesterase (ChE) (IC50, 19.7 nM for hAChE and 0.66 µM for hBuChE) and the good Aß aggregation inhibition (49.2% at 20 µM), and it was also a good antioxidant (1.26 trolox equivalents). Kinetic and molecular modeling studies showed that compound 4g was a mixed-type inhibitor, which could interact simultaneously with the catalytic anionic site (CAS) and the peripheral anionic site (PAS) of AChE. Moreover, compound 4g could remarkably increase PC12 cells viability in hydrogen peroxide-induced oxidative cell damage and Aß-induced cell damage. Finally, compound 4g had good ability to cross the BBB using the PAMPA-BBB assay. These results suggested that compound 4g was a promising multifunctional ChE inhibitor for the further investigation.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anticoagulantes/uso terapêutico , Ácidos Cumáricos/química , Ácidos Cumáricos/síntese química , Simulação de Acoplamento Molecular/métodos , Doença de Alzheimer/patologia , Anticoagulantes/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Modelos Moleculares
16.
BMC Plant Biol ; 19(1): 506, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31747904

RESUMO

BACKGROUND: Ethylene-responsive factors (ERFs) play important roles in plant growth and development and the response to adverse environmental factors, including abiotic and biotic stresses. RESULTS: In the present study, we identified 160 soybean ERF genes distributed across 20 chromosomes that could be clustered into eight groups based on phylogenetic relationships. A highly ABA-responsive ERF gene, GmERF75, belonging to Group VII was further characterized. Subcellular localization analysis showed that the GmERF75 protein is localized in the nucleus, and qRT-PCR results showed that GmERF75 is responsive to multiple abiotic stresses and exogenous hormones. GmERF75-overexpressing Arabidopsis lines showed higher chlorophyll content compared to WT and mutants under osmotic stress. Two independent Arabidopsis mutations of AtERF71, a gene homologous to GmERF75, displayed shorter hypocotyls, and overexpression of GmERF75 in these mutants could rescue the short hypocotyl phenotypes. Overexpressing GmERF75 in soybean hairy roots improved root growth under exogenous ABA and salt stress. CONCLUSIONS: These results suggested that GmERF75 is an important plant transcription factor that plays a critical role in enhancing osmotic tolerance in both Arabidopsis and soybean.


Assuntos
Glycine max/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Etilenos/metabolismo , Expressão Gênica , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/fisiologia , Pressão Osmótica , Fenótipo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Glycine max/crescimento & desenvolvimento , Glycine max/fisiologia , Estresse Fisiológico , Fatores de Transcrição/genética
17.
Cancer Cell Int ; 19: 264, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632198

RESUMO

BACKGROUND: Centromere Protein F (CENPF) associates with the centromere-kinetochore complex and influences cell proliferation and metastasis in several cancers. The role of CENPF in breast cancer (BC) bone metastasis remains unclear. METHODS: Using the ONCOMINE database, we compared the expression of CENPF in breast cancer and normal tissues. Findings were confirmed in 60 BC patients through immunohistochemical (IHC) staining. Microarray data from GEO and Kaplan-Meier plots were used analyze the overall survival (OS) and relapse free survival (RFS). Using the GEO databases, we compared the expression of CENPF in primary lesions, lung metastasis lesions and bone metastasis lesions, and validated our findings in BALB/C mouse 4T1 BC models. Based on gene set enrichment analysis (GSEA) and western blot, we predicted the mechanisms by which CENPF regulates BC bone metastasis. RESULTS: The ONCOMINE database and immunohistochemical (IHC) showed higher CENPF expression in BC tissue compared to normal tissue. Kaplan-Meier plots also revealed that high CENPF mRNA expression correlated to poor survival and shorter progression-free survival (RFS). From BALB/C mice 4T1 BC models and the GEO database, CENPF was overexpressed in primary lesions, other target organs, and in bone metastasis. Based on gene set enrichment analysis (GSEA) and western blot, we predicted that CENPF regulates the secretion of parathyroid hormone-related peptide (PTHrP) through its ability to activate PI3K-AKT-mTORC1. CONCLUSION: CENPF promotes BC bone metastasis by activating PI3K-AKT-mTORC1 signaling and represents a novel therapeutic target for BC treatment.

18.
Analyst ; 144(11): 3676-3684, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31086902

RESUMO

Biothiols, including cysteine (Cys), homocysteine (Hcy), glutathione (GSH) and H2S, play important roles in human physiological processes. However, it is a great difficulty to distinguish biothiols from each other because of their similar chemical properties. Based on Nile red, we have designed and synthesized a near-infrared fluorescent probe for discriminating Cys/Hcy from GSH/H2S by a dual-channel detection method. Using an ether bond, near-infrared Nile red was attached to 7-nitrobenzofurazan to construct the probe. Due to the photo-induced electron transfer, the probe showed almost no fluorescence from the green to red emission band. But upon the addition of Cys (0-150 µM) or Hcy (0-200 µM), the probe exhibited a noteworthy fluorescence "turn-on" signal in two unique emission bands (Green and Red) with a fast response (within 30 min). In contrast, the probe displayed an increase in fluorescence only in the red channel when encountering GSH (0-70 µM) or H2S (0-50 µM), and GSH/H2S could be tested respectively by different response time. The limit of detection was calculated to be 0.09 µM (Cys), 0.30 µM (Hcy), 0.24 µM (GSH), and 0.04 µM (H2S), respectively (based on S/N = 3). The desirable dual-channel detection could be achieved in serum samples and living cells. Moreover, the probe could be applied for bioimaging in mice, which indicated its potential application in the clinic.


Assuntos
Cisteína/análise , Corantes Fluorescentes/química , Glutationa/análise , Homocisteína/análise , Sulfeto de Hidrogênio/análise , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/síntese química , 4-Cloro-7-nitrobenzofurazano/toxicidade , Animais , Linhagem Celular Tumoral , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Camundongos Nus , Imagem Óptica/métodos , Oxazinas/síntese química , Oxazinas/química , Oxazinas/toxicidade , Espectrometria de Fluorescência
19.
Cell Biochem Funct ; 37(2): 72-83, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30773657

RESUMO

Cancer cell progression and proliferation increase cell density, resulting in changes to the tumour site, including the microenvironment. What is not known is if increased cell density influences the aggressiveness of cancer cells, especially their proliferation, migration, and invasion capabilities. In this study, we found that dense cell culture enhances the aggressiveness of the metastatic cancer cell lines, 4T1 and ZR-75-30, by increasing their proliferation, migration, and invasion capabilities. However, a less metastatic cell line, MCF-7, did not show an increase in aggressiveness, following dense cell culture conditions. We conducted a differential proteomic analysis on 4T1 cells cultured under dense or sparse conditions and identified an increase in expression for proteins involved in migration, including focal adhesion, cytoskeletal reorganization, and transendothelial migration. In contrast, 4T1 cells grown under sparse conditions had higher expression levels for proteins involved in metabolism, including lipid and phospholipid binding, lipid and cholesterol transporter activity, and protein binding. These results suggest that the high-density tumour microenvironment can cause a change in cellular behaviour, leading towards more aggressive cancers. SIGNIFICANCE OF THE STUDY: Metastasis of cancer cells is an obstacle to the clinical treatment of cancer. We found that dense cultures made metastatic cancer cells more potent in terms of proliferation, migration, and invasion. The proteomic and bioinformatic analyses provided some valuable clues for further intensive studies about the effects of cell density on cancer cell aggressiveness, which were associated with events such as pre-mRNA splicing and RNA transport, focal adhesion and cytoskeleton reorganization, ribosome biogenesis, and transendothelial migration, or associated with proteins, such as JAM-1 and S100A11. This investigation gives us new perspectives to investigate the metastasis mechanisms related to the microenvironment of tumour sites.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas de Neoplasias/metabolismo , Proteômica , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética
20.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775269

RESUMO

Plants have a series of response mechanisms to adapt when they are subjected to external stress. Calcium-dependent protein kinases (CDPKs) in plants function against a variety of abiotic stresses. We screened 17 CDPKs from drought- and salt-induced soybean transcriptome sequences. The phylogenetic tree divided CDPKs of rice, Arabidopsis and soybean into five groups (I-V). Cis-acting element analysis showed that the 17 CDPKs contained some elements associated with drought and salt stresses. Quantitative real-time PCR (qRT-PCR) analysis indicated that the 17 CDPKs were responsive after different degrees of induction under drought and salt stresses. GmCDPK3 was selected as a further research target due to its high relative expression. The subcellular localization experiment showed that GmCDPK3 was located on the membrane of Arabidopsis mesophyll protoplasts. Overexpression of GmCDPK3 improved drought and salt resistance in Arabidopsis. In the soybean hairy roots experiment, the leaves of GmCDPK3 hairy roots with RNA interference (GmCDPK3-RNAi) soybean lines were more wilted than those of GmCDPK3 overexpression (GmCDPK3-OE) soybean lines after drought and salt stresses. The trypan blue staining experiment further confirmed that cell membrane damage of GmCDPK3-RNAi soybean leaves was more severe than in GmCDPK3-OE soybean lines. In addition, proline (Pro) and chlorophyll contents were increased and malondialdehyde (MDA) content was decreased in GmCDPK3-OE soybean lines. On the contrary, GmCDPK3-RNAi soybean lines had decreased Pro and chlorophyll content and increased MDA. The results indicate that GmCDPK3 is essential in resisting drought and salt stresses.


Assuntos
Secas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/genética , Proteínas de Plantas/genética , Estresse Salino/genética , Cloreto de Sódio/efeitos adversos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Elementos de Resposta , Glycine max/efeitos dos fármacos , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA