Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 110, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35139824

RESUMO

BACKGROUND: GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS: With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS: This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.


Assuntos
Archaea , Células Procarióticas , Archaea/genética , Composição de Bases , Filogenia , Temperatura
2.
BMC Evol Biol ; 19(1): 35, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691392

RESUMO

BACKGROUND: Among the four bases, guanine is the most susceptible to damage from oxidative stress. Replication of DNA containing damaged guanines results in G to T mutations. Therefore, the mutations resulting from oxidative DNA damage are generally expected to predominantly consist of G to T (and C to A when the damaged guanine is not in the reference strand) and result in decreased GC content. However, the opposite pattern was reported 16 years ago in a study of prokaryotic genomes. Although that result has been widely cited and confirmed by nine later studies with similar methods, the omission of the effect of shared ancestry requires a re-examination of the reliability of the results. RESULTS: When aerobic and obligate aerobic prokaryotes were mixed together and anaerobic and obligate anaerobic prokaryotes were mixed together, phylogenetic controlled analyses did not detect significant difference in GC content between aerobic and anaerobic prokaryotes. This result is consistent with two generally neglected studied that had accounted for the phylogenetic relationship. However, when obligate aerobic prokaryotes were compared with aerobic prokaryotes, anaerobic prokaryotes, and obligate anaerobic prokaryotes separately using phylogenetic regression analysis, a significant positive association was observed between aerobiosis and GC content, no matter it was calculated from whole genome sequences or the 4-fold degenerate sites of protein-coding genes. Obligate aerobes have significantly higher GC content than aerobes, anaerobes, and obligate anaerobes. CONCLUSIONS: The positive association between aerobiosis and GC content could be attributed to a mutational force resulting from incorporation of damaged deoxyguanosine during DNA replication rather than oxidation of the guanine nucleotides within DNA sequences. Our results indicate a grade in the aerobiosis-associated mutational force, strong in obligate aerobes, moderate in aerobes, weak in anaerobes and obligate anaerobes.


Assuntos
Composição de Bases/genética , Células Procarióticas/metabolismo , Aerobiose , Anaerobiose , Humanos , Análise dos Mínimos Quadrados , Filogenia , Análise de Regressão , Reprodutibilidade dos Testes
3.
Front Microbiol ; 13: 773114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35300480

RESUMO

Although performing adaptive immunity, CRISPR-Cas systems are present in only 40% of bacterial genomes. We observed an abrupt increase of bacterial CRISPR-Cas abundance at around 45°C. Phylogenetic comparative analyses confirmed that the abundance correlates with growth temperature only at the temperature range around 45°C. From the literature, we noticed that the diversities of cellular predators (like protozoa, nematodes, and myxobacteria) have a steep decline at this temperature range. The grazing risk faced by bacteria reduces substantially at around 45°C and almost disappears above 60°C. We propose that viral lysis would become the dominating factor of bacterial mortality, and antivirus immunity has a higher priority at higher temperatures. In temperature ranges where the abundance of cellular predators does not change with temperature, the growth temperatures of bacteria would not significantly affect their CRISPR-Cas contents. The hypothesis predicts that bacteria should also be rich in CRISPR-Cas systems if they live in other extreme conditions inaccessible to grazing predators.

4.
PeerJ ; 4: e2272, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547574

RESUMO

The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals.

5.
Biol Direct ; 10(1): 24, 2015 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27392031

RESUMO

UNLABELLED: In this study, we identified 19 intron losses, including 11 precise intron losses (PILs), six imprecise intron losses (IILs), one de-exonization, and one exon deletion in tomato and potato, and 17 IILs in Arabidopsis thaliana. Comparative analysis of related genomes confirmed that all of the IILs have been fixed during evolution. Consistent with previous studies, our results indicate that PILs are a major type of intron loss. However, at least in plants, IILs are unlikely to be as rare as previously reported. REVIEWERS: This article was reviewed by Jun Yu and Zhang Zhang. For complete reviews, see the Reviewers' Reports section.


Assuntos
Arabidopsis/genética , Íntrons , Deleção de Sequência , Solanum lycopersicum/genética , Solanum tuberosum/genética , Sequência de Bases , Evolução Molecular , Éxons/genética , Genoma de Planta , Mutação INDEL , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA