Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 130, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711033

RESUMO

BACKGROUND: Cyclic ß-1,2-glucans (CßG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CßG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CßG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CßG. RESULTS: We present the production of CßG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CßG synthesis, transport and succinilation. These strains produce different types of CßG: unsubstituted CßG, anionic CßG and CßG of high size. Unsubstituted CßG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CßG /L in culture medium within 48 h culture. CONCLUSIONS: We have developed a new recombinant bacterial system for the synthesis of cyclic ß-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CßG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CßG availability for further research and the widespread use of these promising molecules across many application fields.


Assuntos
Escherichia coli , beta-Glucanas , Escherichia coli/metabolismo , Escherichia coli/genética , beta-Glucanas/metabolismo
2.
Appl Microbiol Biotechnol ; 106(13-16): 5035-5049, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35799069

RESUMO

Valorization of the hemicellulose fraction of plant biomass is crucial for the sustainability of lignocellulosic biorefineries. The Cellulomonas genus comprises Gram-positive Actinobacteria that degrade cellulose and other polysaccharides by secreting a complex array of enzymes. In this work, we studied the specificity and synergy of two enzymes, CsXyn10A and CsAbf62A, which were identified as highly abundant in the extracellular proteome of Cellulomonas sp. B6 when grown on wheat bran. To explore their potential for bioprocessing, the recombinant enzymes were expressed and their activities were thoroughly characterized. rCsXyn10A is a GH10 endo-xylanase (EC 3.2.1.8), active across a broad pH range (5 to 9), at temperatures up to 55 °C. rCsAbf62A is an α-L-arabinofuranosidase (ABF) (EC 3.2.1.55) that specifically removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides (AXOS), xylan, and arabinan backbones, but it cannot act on double-substituted residues. It also has activity on pNPA. No differences were observed regarding activity when CsAbf62A was expressed with its appended CBM13 module or only the catalytic domain. The amount of xylobiose released from either wheat arabinoxylan or arabino-xylo-oligosaccharides increased significantly when rCsXyn10A was supplemented with rCsAbf62A, indicating that the removal of arabinosyl residues by rCsAbf62A improved rCsXyn10A accessibility to ß-1,4-xylose linkages, but no synergism was observed in the deconstruction of wheat bran. These results contribute to designing tailor-made, substrate-specific, enzymatic cocktails for xylan valorization. KEY POINTS: • rCsAbf62A removes α-1,2 and α-1,3-L-arabinosyl substituents from arabino-xylo-oligosaccharides, xylan, and arabinan backbones. • The appended CBM13 of rCsAbf62A did not affect the specific activity of the enzyme. • Supplementation of rCsXyn10A with rCsAbf62A improves the degradation of AXOS and xylan.


Assuntos
Cellulomonas , Xilanos , Cellulomonas/genética , Cellulomonas/metabolismo , Fibras na Dieta , Endo-1,4-beta-Xilanases/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Oligossacarídeos/metabolismo , Especificidade por Substrato , Xilanos/metabolismo
3.
Appl Microbiol Biotechnol ; 104(22): 9631-9643, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32965563

RESUMO

Woody biomass represents an important source of carbon on earth, and its global recycling is highly dependent on Agaricomycetes fungi. White-rot Basidiomycetes are a very important group in this regard, as they possess a large and diverse enzymatic repertoire for biomass decomposition. Among these enzymes, the recently discovered lytic polysaccharide monooxygenases (LPMOs) have revolutionized biomass processing with their novel oxidative mechanism of action. The strikingly high representation of LPMOs in fungal genomes raises the question of their functional versatility. In this work, we studied an AA9 LPMO from the white-rot basidiomycete Pycnoporus sanguineus, PsAA9A. Successfully produced as a recombinant secreted protein in Pichia pastoris, PsAA9A was found to be a C1-specific LPMO active on cellulosic substrates, generating native and oxidized cello-oligosaccharides in the presence of an external electron donor. PsAA9A boosted cellulolytic activity of glysoside hydrolases from families GH1, GH5, and GH6.This study serves as a starting point towards understanding the functional versatility and biotechnological potential of this enzymatic family, highly represented in wood decay fungi, in Pycnoporus genus. KEY POINTS: • PsAA9A is the first AA9 from P. sanguineus to be characterized. • PsAA9A has activity on cellulose, producing C1-oxidized cello-oligosaccharides. • Boosting activity with GH1, GH5, and GH6 was proven.


Assuntos
Proteínas Fúngicas , Oxigenases de Função Mista , Proteínas Fúngicas/genética , Humanos , Oxigenases de Função Mista/genética , Polyporaceae , Polissacarídeos , Saccharomycetales
4.
Biochem Biophys Res Commun ; 516(3): 934-940, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31277939

RESUMO

This study shows the effects of tamoxifen, a known estrogen receptor antagonist used in the treatment of breast cancer, on the sphingolipid pathway of Trypanosoma cruzi, searching for potential chemotherapeutic targets. A dose-dependent epimastigote growth inhibition at increasing concentration of tamoxifen was determined. In blood trypomastigotes, treatment with 10 µM showed 90% lysis, while 86% inhibition of intracellular amastigote development was obtained using 50 µM. Lipid extracts from treated and non-treated metabolically labelled epimastigotes evidenced by thin layer chromatography different levels of sphingolipids and MALDI-TOF mass spectrometry analysis assured the identity of the labelled species. Comparison by HPLC-ESI mass spectrometry of lipids, notably exhibited a dramatic increase in the level of ceramide in tamoxifen-treated parasites and a restrained increase of ceramide-1P and sphingosine, indicating that the drug is acting on the enzymes involved in the final breakdown of ceramide. The ultrastructural analysis of treated parasites revealed characteristic morphology of cells undergoing an apoptotic-like death process. Flow cytometry confirmed cell death by an apoptotic-like machinery indicating that tamoxifen triggers this process by acting on the parasitic sphingolipid pathway.


Assuntos
Antiprotozoários/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Esfingolipídeos/antagonistas & inibidores , Tamoxifeno/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Ceramidas/antagonistas & inibidores , Ceramidas/biossíntese , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Reposicionamento de Medicamentos , Antagonistas de Estrogênios/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Esfingolipídeos/biossíntese , Esfingosina/antagonistas & inibidores , Esfingosina/biossíntese , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
5.
Biochem Biophys Res Commun ; 497(4): 1082-1088, 2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29496449

RESUMO

Parasites of the genus Plasmodium responsible for Malaria are obligate intracellular pathogens residing in mammalian red blood cells, hepatocytes, or mosquito midgut epithelial cells. Regarding that detailed knowledge on the sphingolipid biosynthetic pathway of the apicomplexan protozoan parasites is scarce, different stages of Plasmodium falciparum were treated with tamoxifen in order to evaluate the effects of this drug on the glycosphingolipid biosynthesis. Thin layer chromatography, High performance reverse phase chromatography and UV-MALDI-TOF mass spectrometry were the tools used for the analysis. In the ring forms, the increase of NBD-phosphatidyl inositol biosynthesis was notorious but differences at NBD-GlcCer levels were undetectable. In trophozoite forms, an abrupt decrease of NBD-acylated GlcDHCer and NBD-GlcDHCer in addition to an increase of NBD-PC biosynthesis was observed. On the contrary, in schizonts, tamoxifen seems not to be producing substantial changes in lipid biosynthesis. Our findings indicate that in this parasite, tamoxifen is exerting an inhibitory action on Glucosylceramidesynthase and sphingomyelin synthase levels. Moreover, regarding that Plasmodium does not biosynthesize inositolphosphoceramides, the accumulation of phosphatidylinositol should indicate an inhibitory action on glycosylinositol phospholipid synthesis.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Eritrócitos/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Esfingolipídeos/biossíntese , Tamoxifeno/farmacologia , Apicomplexa , Cromatografia de Fase Reversa , Eritrócitos/metabolismo , Glicoesfingolipídeos/análise , Estágios do Ciclo de Vida , Espectrometria de Massas , Fosfatidilinositóis/análise , Infecções por Protozoários , Esfingolipídeos/análise
6.
Med Microbiol Immunol ; 207(2): 117-128, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29274017

RESUMO

In this work, the presence of sulfated N-glycans was studied in a high-mannose-type glycoprotein of Trypanosoma cruzi with serinecarboxipeptidase (TcSCP) activity. The immune cross-reactivity between purified SCP and Cruzipain (Cz) was evidenced using rabbit sera specific for both glycoproteins. Taking advantage that SCP co-purifies with Cz from Concanavalin-A affinity columns, the Cz-SCP mixture was desulfated, ascribing the cross-reactivity to the presence of sulfate groups in both molecules. Therefore, knowing that Cz is a sulfated glycoprotein, with antigenic sulfated epitopes (sulfotopes), SCP was excised from SDS-PAGE and the N-glycosydic chains were analyzed by UV-MALDI-TOF-MS, confirming the presence of short-sulfated high-mannose-type oligosaccharidic chains. Besides, the presence of sulfotopes was analyzed in lysates of the different parasite stages demonstrating that a band with apparent molecular weight similar to SCP was highly recognized in trypomastigotes. In addition, SCP was confronted with sera of infected people with different degrees of cardiac dysfunction. Although most sera recognized it in different groups, no statistical association was found between sera antibodies specific for SCP and the severity of the disease. In summary, our findings demonstrate (1) the presence of sulfate groups in the N-glycosidic short chains of native TcSCP, (2) the existence of immune cross-reactivity between Cz and SCP, purified from epimastigotes, (3) the presence of common sulfotopes between both parasite glycoproteins, and (4) the enhanced presence of sulfotopes in trypomastigotes, probably involved in parasite-host relationship and/or infection. Interestingly, we show for the first time that SCP is a minor antigen recognized by most of chronic Chagas disease patient's sera.


Assuntos
Antígenos de Protozoários/imunologia , Carboxipeptidases/imunologia , Doença de Chagas/imunologia , Glicoproteínas/imunologia , Trypanosoma cruzi/imunologia , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Reações Cruzadas , Cisteína Endopeptidases/imunologia , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Espectrometria de Massas , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários , Coelhos , Sulfatos/análise , Trypanosoma cruzi/enzimologia
7.
Eukaryot Cell ; 13(2): 320-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24376001

RESUMO

Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target.


Assuntos
Alquil e Aril Transferases/metabolismo , Estágios do Ciclo de Vida , Nitrilas/farmacologia , Proteínas de Protozoários/metabolismo , Piridinas/farmacologia , Trypanosoma brucei brucei/enzimologia , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/genética , Animais , Doxiciclina/uso terapêutico , Inibidores Enzimáticos/farmacologia , Glicerol/uso terapêutico , Indóis , Maleimidas , Camundongos , Nitrilas/farmacocinética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Piridinas/farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase/tratamento farmacológico , Ubiquinona/biossíntese
8.
Front Cell Infect Microbiol ; 11: 814276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35059328

RESUMO

Trypanosoma cruzi cruzipain (Cz) bears a C-terminal domain (C-T) that contains sulfated epitopes "sulfotopes" (GlcNAc6S) on its unique N-glycosylation site. The effects of in vivo exposure to GlcNAc6S on heart tissue ultrastructure, immune responses, and along the outcome of infection by T. cruzi, were evaluated in a murine experimental model, BALB/c, using three independent strategies. First, mice were pre-exposed to C-T by immunization. C-T-immunized mice (C-TIM) showed IgG2a/IgG1 <1, induced the production of cytokines from Th2, Th17, and Th1 profiles with respect to those of dC-TIM, which only induced IL-10 respect to the control mice. Surprisingly, after sublethal challenge, both C-TIM and dC-TIM showed significantly higher parasitemia and mortality than the control group. Second, mice exposed to BSA-GlcNAc6S as immunogen (BSA-GlcNAc6SIM) showed: severe ultrastructural cardiac alterations while BSA-GlcNAcIM conserved the regular tissue architecture with slight myofibril changes; a strong highly specific humoral-immune-response reproducing the IgG-isotype-profile obtained with C-TIM; and a significant memory-T-cell-response demonstrating sulfotope-immunodominance with respect to BSA-GlcNAcIM. After sublethal challenge, BSA-GlcNAc6SIM showed exacerbated parasitemias, despite elevated IFN-γ levels were registered. In both cases, the abrogation of ultrastructural alterations when using desulfated immunogens supported the direct involvement of sulfotopes and/or indirect effect through their specific antibodies, in the induction of tissue damage. Finally, a third strategy using a passive transference of sulfotope-specific antibodies (IgG-GlcNAc6S) showed the detrimental activity of IgG-GlcNAc6S on mice cardiac tissue, and mice treated with IgG-GlcNAc6S after a sublethal dose of T. cruzi, surprisingly reached higher parasitemias than control groups. These findings confirmed the indirect role of the sulfotopes, via their IgG-GlcNAc6S, both in the immunopathogenicity as well as favoring T. cruzi infection.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Antígenos de Protozoários , Cisteína Endopeptidases , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários
9.
J Am Soc Mass Spectrom ; 19(7): 923-6, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18467120

RESUMO

Each day, advances in the instrumentation and operating protocols bring new applications and insights into the molecular processes of ultra violet-matrix assisted laser desorption/ionization-mass spectrometry (UV-MALDI MS), increasing its potential use. We report here an approach in which mass spectrometry analysis of sphingolipids has been performed using a fluorescent tag (nitrobenz-2-oxa-1, 3-diazole, NBD) covalently linked to the sphingoid base as matrix. Thus, different labeled-sphingolipids were analyzed: ceramide, dihydroceramide, acetylceramide, glucosylceramide, galactosylceramide, galactosyldihydroceramide. In addition an extract of glycosphingolipids obtained from epimastigote forms of Trypanosoma cruzi metabolically labeled with NBD-ceramide was analyzed. The goal of this work is to show that no matrix needs to be added for the mass spectrometry analysis as the same tag used to label the lipids may generate efficiently analyte ions to obtain high quality signals.


Assuntos
Glicoesfingolipídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrofotometria Ultravioleta/métodos , Animais , Glicoesfingolipídeos/biossíntese , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrofotometria Ultravioleta/instrumentação , Trypanosoma cruzi/química , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
10.
Mol Biochem Parasitol ; 154(1): 22-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17498820

RESUMO

Sulfated glycosphingolipids are present on the surface of a variety of cells. They are active participants in adhesion processes in many systems and appear to be involved in the regulation of cell proliferation, differentiation and other developmental cellular events. However, the body of knowledge about synthesis, structure, and function of glycolipids in parasitic protozoa is very limited so far. In this work, we show by metabolic incorporation of [(14)C]palmitic acid, [(14)C]glucose and Na(2)(35)SO(4) that sulfoglycosphingolipids are biosynthesized in the three intraerythrocytic stages of Plasmodium falciparum. After saponification, purification of the labelled acidic components was achieved and two components named SPf1 and SPf2 were characterized. Chemical degradations and TLC analysis pointed out to sulfolipidic structures. Analysis by UV-MALDI-TOF mass spectrometry in the negative ion mode using nor-harmane as matrix showed for SPf2 a structure consisting in a disulfated hexose linked to a 20:1 sphingosine acylated with C18:0 fatty acid. Interestingly, parasite treatment with low concentrations of d,l-threo-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) caused an arrest on parasite development associated to the inhibition of sulfoglycolipid biosynthesis. Taking into account that sulfoglycolipidic structures are currently involved in adhesion processes, our findings open the possibility to study the participation of this type of structures in the described aggregation phenomena in severe malaria and may contribute to clarify the pathogenesis of the disease. This report shows for the first time the synthesis of sulfoglycolipids in Apicomplexa.


Assuntos
Plasmodium falciparum/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Animais , Antimaláricos/farmacologia , Radioisótopos de Carbono/metabolismo , Cromatografia em Camada Fina , Glucose/metabolismo , Espectrometria de Massas , Morfolinas/farmacologia , Ácido Palmítico/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/efeitos dos fármacos , Esfingolipídeos/farmacologia , Sulfatos/metabolismo , Sulfoglicoesfingolipídeos/análise
11.
FEBS J ; 279(19): 3665-3679, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22846255

RESUMO

Cruzipain (Cz), the major cysteine proteinase of Trypanosoma cruzi, is a glycoprotein that contains sulfated high-mannose-type oligosaccharides. We have previously determined that these sulfate groups are targets of specific immune responses. In order to evaluate the structural requirements for antibody recognition of Cz, a systematic structure-activity study of the chemical characteristics needed for antibody binding to the Cz sulfated epitope was performed by immunoassays. With this aim, different synthesized molecules were coupled to the proteins BSA and aprotinin and confronted with (a) mouse sera specific for Cz and its carboxy-terminal (C-T) domain, (b) antibodies raised in rabbits immunized with Cz and its C-terminal domain and (c) IgGs purified from human Chagas disease sera. Our results indicate that a glucosamine containing an esterifying sulfate group in position O-6 and an N-acetyl group was the preferred epitope for the immune recognition of sera specific for Cz and its C-T domain. Although to a minor extent, other anionic compounds bearing sulfate groups in different positions and number as well as different anionic charged groups including carboxylated or phosphorylated monosaccharides, disaccharides and oligosaccharides were recognized. In conclusion, we found that synthetic anionic sugar conjugates containing N-acetyl d-glucosamine-6-sulfate sodium salt (GlcNAc6S) competitively inhibit the binding of affinity purified rabbit anti-C-T IgG to the C-T extension of Cz. Extending these findings to the context of natural infection, immune assays performed with Chagas disease serum confirmed that the structure of synthetic GlcNAc6S mimics the N-glycan-linked sulfated epitope displayed in the C-T domain of Cz.


Assuntos
Acetilglucosamina/imunologia , Ânions/imunologia , Doença de Chagas/imunologia , Cisteína Endopeptidases/imunologia , Epitopos/imunologia , Oligossacarídeos/imunologia , Sulfatos/imunologia , Trypanosoma cruzi/imunologia , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Doença de Chagas/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas de Protozoários , Coelhos , Testes Sorológicos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Adulto Jovem
12.
J Am Soc Mass Spectrom ; 21(1): 178-90, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19892568

RESUMO

Nitrous acid degradation of heparin followed by high-performance anion-exchange chromatography (HPAEC) separation and ultraviolet matrix assisted laser desorption/ionization time-of-flight (UV-MALDI-TOF) analysis led to the structural determination of six sulfated oligosaccharides. Three different matrices (alpha-cyano-4-hydroxycinnamic acid (CHCA), nor-harmane, and dihydroxybenzoic acid (DHB)) have been used, and the complementary results obtained allowed in most cases to assign the position of sulfate groups. Based on the different cleavages produced on the purified oligosaccharides in source during the MS analysis by the use of the different matrices, this approach provides a new tool for structural analysis.


Assuntos
Cromatografia por Troca Iônica/métodos , Heparina/química , Oligossacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão/economia , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/economia , Dados de Sequência Molecular , Estrutura Molecular , Ácido Nitroso/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/economia , Espectrofotometria Ultravioleta , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA