Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Cell Physiol ; 233(9): 6408-6417, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663383

RESUMO

Prostate cancer is screened by testing circulating levels of the prostate-specific antigen (PSA) biomarker, monitoring changes over time, or a digital rectal exam. Abnormal results often lead to prostate biopsy. Prostate cancer positive patients are stratified into very low-risk, low-risk, intermediate-risk, and high-risk, based on clinical classification parameters, to assess therapy options. However, there remains a gap in our knowledge and a compelling need for improved risk stratification to inform clinical decisions and reduce both over-diagnosis and over-treatment. Further, current strategies for clinical intervention do not distinguish clinically aggressive prostate cancer from indolent disease. This mini-review takes advantage of a large number of functionally characterized microRNAs (miRNA), epigenetic regulators of prostate cancer, that define prostate cancer cell activity, tumor stage, and circulate as biomarkers to monitor disease progression. Nanoparticles provide an effective platform for targeted delivery of miRNA inhibitors or mimics specifically to prostate tumor cells to inhibit cancer progression. Several prostate-specific transmembrane proteins expressed at elevated levels in prostate tumors are under investigation for targeting therapeutic agents to prostate cancer cells. Given that prostate cancer progresses slowly, circulating miRNAs can be monitored to identify tumor progression in indolent disease, allowing identification of miRNAs for nanoparticle intervention before the crucial point of transition to aggressive disease. Here, we describe clinically significant and non-invasive intervention nanoparticle strategies being used in clinical trials for drug and nucleic acid delivery. The advantages of mesoporous silica-based nanoparticles and a number of candidate miRNAs for inhibition of prostate cancer are discussed.


Assuntos
Nanopartículas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Progressão da Doença , Epigenômica/métodos , Humanos , Masculino , MicroRNAs/genética , Antígeno Prostático Específico/genética , Neoplasias da Próstata/genética
2.
J Immunol ; 197(4): 1322-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27421477

RESUMO

Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1ß and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1ß and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1ß secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols.


Assuntos
Álcoois/toxicidade , Etanol/toxicidade , Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteínas Tirosina Fosfatases/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Humanos , Inflamassomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Tirosina Fosfatases/metabolismo
3.
J Am Chem Soc ; 139(11): 3978-3981, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28260375

RESUMO

Exposure to biological fluid envelops a nanoparticle in layers of proteins and biomolecules, which has a profound impact on the nanoparticle's biological fate. Although the identities and amounts of the proteins in this "corona" have been thoroughly examined, the spatial arrangement of the proteins is unclear, a problem that is compounded on porous nanoparticles due to penetration of proteins within the porous network. To address this problem, we have developed a procedure based on information derived from stochastic optical reconstruction microscopy. We employed a mathematical model to reveal the penetration depth of several proteins within porous nanoparticles. Understanding protein penetration depth provides an explanation for the composition of the protein corona, aiding in the development of safe and effective particle-based therapies.


Assuntos
Nanopartículas/química , Proteínas/química , Dióxido de Silício/química , Adsorção , Microscopia , Fenômenos Ópticos , Tamanho da Partícula , Porosidade , Processos Estocásticos , Propriedades de Superfície
4.
Langmuir ; 30(15): 4396-405, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24087929

RESUMO

Porous silica particles are potential transfection agents for nucleic acid-based therapies because of their large specific surface areas and pore volumes and the ease with which they can be chemically modified to maximize the loading of cargo and to effect targeting in vivo. Here, we present a systematic study of the effects of pore size and pore modification on the adsorption and release of short, interfering RNA (siRNA) from a mesoporous silica particle developed in our laboratory. Using adsorption isotherms and release experiments, we found that the short polyamine diethylenetriamine was the best chemical modification for achieving both the adsorption and release of large amounts of siRNA. The degree of functionalization with diethylenetriamine caused drastic changes in the loading capacity and binding strength of siRNA to silica with relatively large pores (8 nm and larger), but the degree of functionalization had a weaker effect in narrow pores (4 nm). Multilayer adsorption could occur in materials with large pores (15 nm). Release experiments showed that intermediate pore sizes and intermediate degrees of functionalization resulted in the best compromise between maximizing loading (from strong adsorption) and maximizing release. Capillary electrophoresis and quantitative, real-time PCR demonstrated that siRNA was released intact and that these particles functioned as a transfection agent of mammalian cells in vitro.


Assuntos
RNA Interferente Pequeno/química , Dióxido de Silício/química , Adsorção , Nanopartículas/química , Porosidade , Propriedades de Superfície
5.
BMC Cancer ; 13: 400, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24024776

RESUMO

BACKGROUND: Malignant mesotheliomas (MMs) are chemoresistant tumors related to exposure to asbestos fibers. The long latency period of MM (30-40 yrs) and heterogeneity of tumor presentation make MM difficult to diagnose and treat at early stages. Currently approved second-line treatments following surgical resection of MMs include a combination of cisplatin or carboplatin (delivered systemically) and pemetrexed, a folate inhibitor, with or without subsequent radiation. The systemic toxicities of these treatments emphasize the need for more effective, localized treatment regimens. METHODS: Acid-prepared mesoporous silica (APMS) microparticles were loaded with doxorubicin (DOX) and modified externally with a mesothelin (MB) specific antibody before repeated intraperitoneal (IP) injections into a mouse xenograft model of human peritoneal MM. The health/weight of mice, tumor volume/weight, tumor necrosis and cell proliferation were evaluated in tumor-bearing mice receiving saline, DOX high (0.2 mg/kg), DOX low (0.05 mg/kg), APMS-MB, or APMS-MB-DOX (0.05 mg/kg) in saline. RESULTS: Targeted therapy (APMS-MB-DOX at 0.05 mg/kg) was more effective than DOX low (0.05 mg/kg) and less toxic than treatment with DOX high (0.2 mg/kg). It also resulted in the reduction of tumor volume without loss of animal health and weight, and significantly decreased tumor cell proliferation. High pressure liquid chromatography (HPLC) of tumor tissue confirmed that APMS-MB-DOX particles delivered DOX to target tissue. CONCLUSIONS: Data suggest that targeted therapy results in greater chemotherapeutic efficacy with fewer adverse side effects than administration of DOX alone. Targeted microparticles are an attractive option for localized drug delivery.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Proteínas Ligadas por GPI/antagonistas & inibidores , Mesotelioma/metabolismo , Mesotelioma/patologia , Microesferas , Animais , Peso Corporal , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Injeções Intraperitoneais , Antígeno Ki-67/metabolismo , Macrófagos/patologia , Mesotelina , Mesotelioma/tratamento farmacológico , Camundongos , Necrose/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Proc Natl Acad Sci U S A ; 107(40): 17125-30, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855581

RESUMO

The waters of the Colorado River serve 27 million people in seven states and two countries but are overallocated by more than 10% of the river's historical mean. Climate models project runoff losses of 7-20% from the basin in this century due to human-induced climate change. Recent work has shown however that by the late 1800s, decades prior to allocation of the river's runoff in the 1920s, a fivefold increase in dust loading from anthropogenically disturbed soils in the southwest United States was already decreasing snow albedo and shortening the duration of snow cover by several weeks. The degree to which this increase in radiative forcing by dust in snow has affected timing and magnitude of runoff from the Upper Colorado River Basin (UCRB) is unknown. Here we use the Variable Infiltration Capacity model with postdisturbance and predisturbance impacts of dust on albedo to estimate the impact on runoff from the UCRB across 1916-2003. We find that peak runoff at Lees Ferry, Arizona has occurred on average 3 wk earlier under heavier dust loading and that increases in evapotranspiration from earlier exposure of vegetation and soils decreases annual runoff by more than 1.0 billion cubic meters or ∼5% of the annual average. The potential to reduce dust loading through surface stabilization in the deserts and restore more persistent snow cover, slow runoff, and increase water resources in the UCRB may represent an important mitigation opportunity to reduce system management tensions and regional impacts of climate change.


Assuntos
Poeira , Modelos Teóricos , Rios , Neve/química , Movimentos da Água , Mudança Climática , Meio Ambiente , Humanos , Estações do Ano , Temperatura
7.
Nanoscale ; 15(30): 12506-12517, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37282587

RESUMO

Many systems for controlled drug release have been developed using different types of nanoparticles modified with azobenzene moieties. In these systems, drug release is often triggered by UV irradiation (either direct or using a near-infrared photosensitizer). These drug delivery systems often face challenges to their use, such as their lack of stability in physiological environments and concerns about their toxicity and bioavailability, that have hindered their translation from pre-clinical studies to clinical trials. Here, we propose a conceptual change by shifting photoswitching activity from the vehicle (nanoparticle) to the load (drug). In this "ship in a bottle" concept, the molecule to be delivered is trapped within a porous nanoparticle and its release is accomplished through a photoisomerization process. Using molecular dynamics, we designed and synthesized a photoswitchable prodrug of the antitumor drug camptothecin that contains an azobenzene functionality, and we have prepared porous silica nanoparticles with pore diameters designed to limit its release when in the trans form. Molecular modelling was used to show that the cis isomer was smaller and better able to pass through the pores than the trans isomer, which was confirmed by stochastic optical reconstruction microscopy (STORM). Thus, prodrug-loaded nanoparticles were prepared by loading the cis prodrug and then using UV irradiation to convert cis to trans isomers, trapping them, within the pores. Release of the prodrug was then accomplished by using a different UV wavelength to convert trans isomers back to cis. In this way, prodrug encapsulation and release could be achieved "on demand" through controlled cis-trans photoisomerization, which allowed the prodrug to be delivered safely and its release to be triggered precisely at the region of interest. Finally, the intracellular release and cytotoxic activity of this novel drug delivery system has been validated in several human cell lines, confirming the ability of this system to accurately control the release of the camptothecin prodrug.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Humanos , Camptotecina/farmacologia , Preparações de Ação Retardada/farmacologia , Sistemas de Liberação de Medicamentos , Porosidade , Pró-Fármacos/farmacologia
8.
J Am Chem Soc ; 134(19): 8046-9, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22545921

RESUMO

Particle-based magnetic resonance imaging (MRI) contrast agents have been the focus of recent studies, primarily due to the possibility of preparing multimodal particles capable of simultaneously targeting, imaging, and treating specific biological tissues in vivo. In addition, particle-based MRI contrast agents often have greater sensitivity than commercially available, soluble agents due to decreased molecular tumbling rates following surface immobilization, leading to increased relaxivities. Mesoporous silica particles are particularly attractive substrates due to their large internal surface areas. In this study, we immobilized a unique phosphonate-containing ligand onto mesoporous silica particles with a range of pore diameters, pore volumes, and surface areas, and Gd(III) ions were then chelated to the particles. Per-Gd(III) ionic relaxivities ranged from ∼2 to 10 mM(-1) s(-1) (37 °C, 60 MHz), compared to 3.0-3.5 mM(-1) s(-1) for commercial agents. The large surface areas allowed many Gd(III) ions to be chelated, leading to per-particle relaxivities of 3.3 × 10(7) mM(-1) s(-1), which is the largest value measured for a biologically suitable particle.


Assuntos
Meios de Contraste/química , Gadolínio/química , Imageamento por Ressonância Magnética , Microesferas , Organofosfonatos/química , Dióxido de Silício/química , Porosidade
9.
Part Fibre Toxicol ; 9(1): 6, 2012 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-22300531

RESUMO

BACKGROUND: Exposure to respirable crystalline silica particles, as opposed to amorphous silica, is associated with lung inflammation, pulmonary fibrosis (silicosis), and potentially with lung cancer. We used Affymetrix/GeneSifter microarray analysis to determine whether gene expression profiles differed in a human bronchial epithelial cell line (BEAS 2B) exposed to cristobalite vs. amorphous silica particles at non-toxic and equal surface areas (75 and 150 × 106µm2/cm2). Bio-Plex analysis was also used to determine profiles of secreted cytokines and chemokines in response to both particles. Finally, primary human bronchial epithelial cells (NHBE) were used to comparatively assess silica particle-induced alterations in gene expression. RESULTS: Microarray analysis at 24 hours in BEAS 2B revealed 333 and 631 significant alterations in gene expression induced by cristobalite at low (75) and high (150 × 106µm2/cm2) amounts, respectively (p < 0.05/cut off ≥ 2.0-fold change). Exposure to amorphous silica micro-particles at high amounts (150 × 106µm2/cm2) induced 108 significant gene changes. Bio-Plex analysis of 27 human cytokines and chemokines revealed 9 secreted mediators (p < 0.05) induced by crystalline silica, but none were induced by amorphous silica. QRT-PCR revealed that cristobalite selectively up-regulated stress-related genes and cytokines (FOS, ATF3, IL6 and IL8) early and over time (2, 4, 8, and 24 h). Patterns of gene expression in NHBE cells were similar overall to BEAS 2B cells. At 75 × 106µm2/cm2, there were 339 significant alterations in gene expression induced by cristobalite and 42 by amorphous silica. Comparison of genes in response to cristobalite (75 × 106µm2/cm2) revealed 60 common, significant gene alterations in NHBE and BEAS 2B cells. CONCLUSIONS: Cristobalite silica, as compared to synthetic amorphous silica particles at equal surface area concentrations, had comparable effects on the viability of human bronchial epithelial cells. However, effects on gene expression, as well as secretion of cytokines and chemokines, drastically differed, as the crystalline silica induced more intense responses. Our studies indicate that toxicological testing of particulates by surveying viability and/or metabolic activity is insufficient to predict their pathogenicity. Moreover, they show that acute responses of the lung epithelium, including up-regulation of genes linked to inflammation, oxidative stress, and proliferation, as well as secretion of inflammatory and proliferative mediators, can be indicative of pathologic potential using either immortalized lines (BEAS 2B) or primary cells (NHBE). Assessment of the degree and magnitude of these responses in vitro are suggested as predictive in determining the pathogenicity of potentially harmful particulates.


Assuntos
Citocinas/biossíntese , Perfilação da Expressão Gênica , Pulmão/efeitos dos fármacos , Dióxido de Silício/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise
10.
Int J Cancer ; 129(1): 233-44, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20830711

RESUMO

New and effective treatment strategies are desperately needed for malignant mesothelioma (MM), an aggressive cancer with a poor prognosis. We have shown previously that acid-prepared mesoporous microspheres (APMS) are nontoxic after intrapleural or intraperitoneal (IP) administration to rodents. The purpose here was to evaluate the utility of APMS in delivering chemotherapeutic drugs to human MM cells in vitro and in two mouse xenograft models of MM. Uptake and release of doxorubicin (DOX) alone or loaded in APMS (APMS-DOX) were evaluated in MM cells. MM cell death and gene expression linked to DNA damage/repair were also measured in vitro. In two severe combined immunodeficient mouse xenograft models, mice received saline, APMS, DOX or APMS-DOX injected directly into subcutaneous (SC) MM tumors or injected IP after development of human MMs peritoneally. Other mice received DOX intravenously (IV) via tail vein injections. In comparison to DOX alone, APMS-DOX enhanced intracellular uptake of DOX, MM death and expression of GADD34 and TP73. In the SC MM model, 3× weekly SC injections of APMS-DOX or DOX alone significantly inhibited tumor volumes, and systemic DOX administration was lethal. In mice developing IP MMs, significant (p < 0.05) inhibition of mesenteric tumor numbers, weight and volume was achieved using IP administration of APMS-DOX at one-third the DOX concentration required after IP injections of DOX alone. These results suggest APMS are efficacious for the localized delivery of lower effective DOX concentrations in MM and represent a novel means of treating intracavitary tumors.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Mesotelioma/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Cromatografia Líquida de Alta Pressão , Doxorrubicina/administração & dosagem , Portadores de Fármacos , Humanos , Camundongos , Microscopia Confocal , Reação em Cadeia da Polimerase
11.
Nanomaterials (Basel) ; 11(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062789

RESUMO

To understand the factors that control the formation of the biomolecular corona, a systematic study of the adsorption of several miRNAs shown to be important in prostate cancer on amine-functionalized mesoporous silica nanoparticles (MSN-NH2) has been performed. Process parameters including miRNA type, nanoparticle concentration, incubation temperature and incubation time were investigated, as well as the potential competition for adsorption between different miRNA molecules. The influence of proteins and particle PEGylation on miRNA adsorption were also explored. We found that low particle concentrations and physiological temperature both led to increased miRNA adsorption. Adsorption of miRNA was also higher when proteins were present in the same solution; reducing or preventing protein adsorption by PEGylating the MSNs hindered adsorption. Finally, the amount of miRNA adsorbed from human serum by MSN-NH2 was compared to a commercial miRNA purification kit (TaqMan®, Life Technologies, Carlsbad, CA, USA). MSN-NH2 adsorbed six times as much miRNA as the commercial kit, demonstrating higher sensitivity to subtle up- and downregulation of circulating miRNA in the blood of patients.

12.
ACS Omega ; 4(5): 8852-8861, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459973

RESUMO

Diagnostic tests based on proteomics analysis can have significant advantages over more traditional biochemical tests. However, low molecular weight (MW) protein biomarkers are difficult to identify by standard mass spectrometric analysis, as they are usually present at low concentrations and are masked by more abundant resident proteins. We have previously shown that mesoporous silica nanoparticles are able to capture a predominantly low MW protein fraction from the serum, as compared to the protein corona (PC) adsorbed onto dense silica nanoparticles. In this study, we begin by further investigating this effect using liquid chromatography-mass spectrometry (LC-MS)/MS and thermogravimetric analysis (TGA) to compare the MW of the proteins in the coronas of mesoporous silica nanoparticles with the same particle size but different pore diameters. Next, we examine the process by which two proteins, one small and one large, adsorb onto these mesoporous silica nanoparticles to establish a theory of why the corona becomes enriched in low MW proteins. Finally, we use this information to develop a novel system for the diagnosis of prostate cancer. An elastic net statistical model was applied to LC-MS/MS protein coronas from the serum of 22 cancer patients, identifying proteins specific to each patient group. These studies help to explain why low MW proteins predominate in the coronas of mesoporous silica nanoparticles, and they illustrate the ability of this information to supplement more traditional diagnostic tests.

13.
J Am Chem Soc ; 130(40): 13214-5, 2008 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-18781745

RESUMO

Vanadium-doped mesoporous silica was shown to be an effective heterogeneous catalyst for the oxidation of a mustard gas analogue, 2-chloroethyl ethyl sulfide (CEES), in the presence of an aldehyde and molecular oxygen. The oxidation was shown to involve a radical mechanism, which was indicated by the appearance of an induction period when the reaction occurred in the presence of a free radical scavenger. The reaction was initially selective for the oxidation of CEES to the sulfoxide, CEESO, although oxidation of the sulfoxide to the sulfone occurred once all the CEES had been oxidized. Chemical analysis indicated that V species did not leach from the silica support when the reaction was performed in the fluorinated solvent HFE-7100.

14.
Redox Biol ; 12: 883-896, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28463821

RESUMO

Alcohol use disorders are common both in the United States and globally, and are associated with a variety of co-morbid, inflammation-linked diseases. The pathogenesis of many of these ailments are driven by the activation of the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1ß and IL-18. We hypothesized that protracted exposure of leukocytes to ethanol would amplify inflammasome activation, which would help to implicate mechanisms involved in diseases associated with both alcoholism and aberrant NLRP3 inflammasome activation. Here we show that long-term ethanol exposure of human peripheral blood mononuclear cells and a mouse macrophage cell line (J774) amplifies IL-1ß secretion following stimulation with NLRP3 agonists, but not with AIM2 or NLRP1b agonists. The augmented NRLP3 activation was mediated by increases in iNOS expression and NO production, in conjunction with increases in mitochondrial membrane depolarization, oxygen consumption rate, and ROS generation in J774 cells chronically exposed to ethanol (CE cells), effects that could be inhibited by the iNOS inhibitor SEITU, the NO scavenger carboxy-PTIO, and the mitochondrial ROS scavenger MitoQ. Chronic ethanol exposure did not alter K+ efflux or Zn2+ homeostasis in CE cells, although it did result in a lower intracellular concentration of NAD+. Prolonged administration of acetaldehyde, the product of alcohol dehydrogenase (ADH) mediated metabolism of ethanol, mimicked chronic ethanol exposure, whereas ADH inhibition prevented ethanol-induced IL-1ß hypersecretion. Together, these results indicate that increases in iNOS and mitochondrial ROS production are critical for chronic ethanol-induced IL-1ß hypersecretion, and that protracted exposure to the products of ethanol metabolism are probable mediators of NLRP3 inflammasome hyperactivation.


Assuntos
Etanol/farmacologia , Interleucina-1beta/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamassomos/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Mitocôndrias/metabolismo
15.
J Phys Chem B ; 110(31): 15261-8, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16884243

RESUMO

In these experiments, double-stranded, linear DNA sequences were adsorbed into the pores of spherically shaped acid-prepared mesoporous silica (APMS). The lengths of the sequences were either 760 base pairs or 2000 base pairs. DNA adsorption into the interior of the mesoporous material was confirmed using confocal microscopy of sequences containing fluorescently labeled DNA molecules. Additional characterization with N(2) physisorption and powder X-ray diffraction supported this finding. The extent of adsorption was measured at various concentrations using UV-visible spectrophotometry to establish adsorption isotherms. APMS alone adsorbed a negligible amount of DNA; however, exchanging divalent cations such as Mg(2+) and Ca(2+) into the pores of APMS prior to DNA uptake was found to cause a significant amount of DNA to be adsorbed. Using Na(+) caused a lower amount of DNA to be adsorbed. DNA adsorption was also dependent on the pore diameter of APMS. Adsorption increased upon expansion of the pore size of the metal ion-exchanged material from 34 to 54 A; however, no additional uptake was measured by further increasing the pore size to 100 A. The amount of DNA adsorbed could also be significantly increased by using (aminopropyl)triethoxysilane to covalently link ammonium ions to the surface. Postsynthetic modification of the silica surface with aminopropyl groups increased the maximum DNA adsorption to 15.7 microg/mg silica, for materials with pore diameters of 100 A, which is 2 to 3 times more adsorbed DNA than for metal ion-exchanged material. This indicated that DNA binds more strongly in the presence of the ammonium group compared to the metal counterions. Finally, calculation and comparison of Freundlich and Langmuir constants for these adsorption processes indicate that intermolecular interactions between the DNA molecules within the pores are significant when the effective pore diameter is small, including materials with larger pores that were modified with organosilane.


Assuntos
DNA/química , Dióxido de Silício/química , Adsorção , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
J Phys Chem B ; 109(51): 24331-7, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16375432

RESUMO

A new class of porous, mixed phase titanosilicate materials containing a microporous TS-1 phase and a mesoporous Ti-MCM-48 phase has been successfully synthesized. A novel, one-pot synthesis method was used in which the organic templates for the mesoporous and microporous phases were added sequentially to the same reaction mixture, followed by crystallization at 150 degrees C. The gemini surfactant 18-12-18 was used to form the Ti-MCM-48 mesophase; subsequent addition of tetrapropylammonium cation (TPA+) led to the formation of TS-1. The relative amounts of the two phases within the final products were controlled by optimizing the crystallization time. Crystallization times between 12 and 50 h gave materials containing both phases, with an increasing amount of microphase formed at longer crystallization times. These materials, called "Ti-MMM-2" (microporous/mesoporous materials) were characterized using powder XRD, N2 physisorption, TEM, FTIR, DR-UV/Vis spectroscopy, and 29Si MAS NMR. In the epoxidation of cyclohexene with tert-butyl hydroperoxide (TBHP), Ti-MMM-2 samples exhibited higher catalytic activity (approximately 61%) than either TS-1 (16%) or Ti-MCM-48 (42%), with a very high selectivity (97%) for formation of cyclohexene oxide.

18.
ACS Appl Mater Interfaces ; 7(39): 21682-9, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26371804

RESUMO

A study on the adsorption of proteins from fetal bovine serum (FBS) on spherical dense and mesoporous silica nanoparticles with a wide range of diameters, from 70 to 900 nm, is presented. Monodisperse populations of particles with a range of diameters were obtained through modifications of the Stöber method. Extensive characterization of the particles was then performed using N2 physisorption, TEM, DLS, and ζ-potential. Following serum exposure, proteomic evaluation in concert with thermogravimetric analysis revealed the associated concentrations of each protein identified in the hard corona. Small particles adsorbed the largest amount of protein, due to their larger external surface area. Proteins with low molecular weights (<50 kDa) constituted the majority of the protein corona, totaling between 60 and 80% of the total mass of adsorbed protein. Here, the higher surface curvature of small particles favors the enrichment of smaller proteins. Porosity does not promote protein adsorption but improves deposition of the low molecular weight protein fraction due to the size-exclusion effect related to pore diameter. These results have important implications for the use of dense and porous silica nanoparticles in biomedical applications.


Assuntos
Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Nanopartículas/química , Dióxido de Silício/química , Adsorção , Animais , Bovinos , Tamanho da Partícula , Propriedades de Superfície
19.
ACS Appl Mater Interfaces ; 7(3): 1987-96, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25549007

RESUMO

A facile sonochemical approach was used to deposit 3-5 nm monodisperse gold nanoparticles on porous SiO2-WO3 composite spheres, as confirmed by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). High-resolution TEM (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) further characterized the supported Au nanoparticles within the Au-SiO2-WO3 composite. These analyses showed isolated Au nanoparticles within both SiO2- and WO3-containing regions. Selective etching of the SiO2 matrix from Au-SiO2-WO3 yielded a pure Au-WO3 material with well-dispersed 10 nm Au nanoparticles and moderate porosity. This combined sonochemical-nanocasting technique has not been previously used to synthesize Au-WO3 photocatalysts. Methylene blue (MB) served as a probe for the adsorption capacity and visible light photocatalytic activity of these WO3-containing catalysts. Extensive MB demethylation (azures A, B, C, and thionine) and polymerization of these products occurred over WO3 under dark conditions, as confirmed by electrospray ionization mass spectrometry (ESI-MS). Photoirradiation of these suspensions led to further degradation primarily through demethylation and polymerization pathways, regardless of the presence of Au nanoparticles. Ring-opening sulfur oxidation to the sulfone was a secondary photocatalytic pathway. According to UV-vis spectroscopy, pure WO3 materials showed superior MB adsorption compared to SiO2-WO3 composites. Compared to their respective nonloaded catalysts, Au-SiO2-WO3 and Au-WO3 catalysts exhibited enhanced visible light photocatalytic activity toward the degradation of MB. Specifically, the rates of MB degradation over Au-WO3 and Au-SiO2-WO3 during 300 min of irradiation were faster than those over their nonloaded counterparts (WO3 and SiO2-WO3). These studies highlight the ability of Au-WO3 to serve as an excellent adsorbant and photodegradation catalyst toward MB.

20.
Cancer Nanotechnol ; 6: 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25642297

RESUMO

INTRODUCTION: Five year survival for metastatic melanoma (MM) is very low at <10%. Therapeutic options have been limited secondary to systemic toxicity. As a result there has been a growing movement towards developing targeted drug delivery models. Prior research of this group has demonstrated the effectiveness of acid-prepared mesoporous spheres (APMS-TEG) in delivering chemotherapeutic agents at a lower effective dose than systemic administration. This study aims to assess the ability of the previously developed APMS-TEG particles to deliver therapeutic doses of docetaxel for the treatment of melanoma. METHODS: In vitro experiments were performed to assess docetaxel loading onto APMS-TEG particles and release kinetics. Toxicity experiments were performed using docetaxel and docetaxel loaded APMS-TEG. The effect on cell growth was assessed using the MelJuSo, UACC903, and WM1205 melanoma cell lines. RESULTS: Docetaxel demonstrated statistically significant dose dependent reduction in growth of melanoma cells. In all three cell lines, doses of 1 nM were sufficient to produce statistically significant reduction in cell growth. Scanning electron micrographs demonstrate increased uptake of APMS-TEG particles by melanoma cells in the first 24 hours, with the majority within the first 4 hours. Unloaded APMS particles had no effect on the melanoma cells, demonstrating that the particles themselves are not toxic. APMS-TEG particles had a peak release of drug within the first hour, with equilibration thereafter. The 5, 10, and 20 nM loaded particles all had statistically significant reduction in cell growth than the control groups. DISCUSSION: The high potency against melanoma cells makes docetaxel a suitable choice for loading into APMS-TEG particles. Docetaxel loaded APMS-TEG particles demonstrate significant activity against malignant melanoma and thus offer an innovative approach to the treatment of metastatic melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA