Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562917

RESUMO

Current protocols converting human induced pluripotent stem cells (iPSCs) into induced microglia-like cells (iMGL) are either dependent on overexpression of transcription factors or require substantial experience in stem-cell technologies. Here, we developed an easy-to-use two-step protocol to convert iPSCs into functional iMGL via: (1) highly efficient differentiation of hematopoietic progenitor cells (HPCs) from iPSCs, and (2) optimized maturation of HPCs to iMGL. A sequential harvesting approach led to an increased HPC yield. The protocol implemented a freezing step, thus allowing HPC biobanking and flexible timing of differentiation into iMGL. Our iMGL responded adequately to the inflammatory stimuli LPS, and iMGL RNAseq analysis matched those of other frequently used protocols. Comparing three different coating modalities, we increased the iMGL yield by culturing on uncoated glass surfaces, thereby retaining differentiation efficiency and functional hallmarks of iMGL. In summary, we provide a high-quality, easy-to-use protocol, rendering generation and functional studies on iMGL an accessible lab resource.


Assuntos
Células-Tronco Pluripotentes Induzidas , Bancos de Espécimes Biológicos , Diferenciação Celular , Células-Tronco Hematopoéticas , Humanos , Microglia
2.
Front Cell Neurosci ; 13: 571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009903

RESUMO

Parkinson's disease (PD) is the most frequently occurring movement disorder, with an increasing incidence due to an aging population. For many years, the post-mortem brain was regarded as the gold standard for the analysis of the human pathology of this disease. However, modern stem cell technologies, including the analysis of patient-specific neurons and glial cells, have opened up new avenues for dissecting the pathologic mechanisms of PD. Most data on morphological changes, such as cell death or changes in neurite complexity, or functional deficits were acquired in 2D and few in 3D models. This review will examine the prerequisites for human disease modeling in PD, covering the generation of midbrain neurons, 3D organoid midbrain models, the selection of controls including genetically engineered lines, and the study of cell-cell interactions. We will present major disease phenotypes in human in vitro models of PD, focusing on those phenotypes that have been detected in genetic and sporadic PD models. An additional point covered in this review will be the use of induced pluripotent stem cell (iPSC)-derived technologies to model cell-cell interactions in PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA