Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(11): e1009010, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211756

RESUMO

Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Rotavirus/imunologia , Vacinas contra Rotavirus/imunologia , Rotavirus/imunologia , Vacinação , Países em Desenvolvimento , Feminino , Humanos , Imunidade nas Mucosas , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Lactente , Leite Humano/imunologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/virologia , Vacinas Atenuadas/imunologia
2.
Clin Infect Dis ; 71(8): 2006-2013, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32382748

RESUMO

The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), reveals a peculiar trend of milder disease and lower case fatality in children compared with adults. Consistent epidemiologic evidence of reduced severity of infection in children across different populations and countries suggests there are underlying biological differences between children and adults that mediate differential disease pathogenesis. This presents a unique opportunity to learn about disease-modifying host factors from pediatric populations. Our review summarizes the current knowledge of pediatric clinical disease, role in transmission, risks for severe disease, protective immunity, as well as novel therapies and vaccine trials for children. We then define key hypotheses and areas for future research that can use the pediatric model of disease, transmission, and immunity to develop preventive and therapeutic strategies for people of all age groups.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Adolescente , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , Comorbidade , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/transmissão , Humanos , Lactente , Recém-Nascido , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/transmissão , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença
3.
Vet Res ; 50(1): 101, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783923

RESUMO

Vitamin A (VA) has pleiotropic effects on the immune system and is critical for mucosal immune function and intestinal lymphocyte trafficking. We hypothesized that oral VA supplementation of porcine epidemic diarrhea virus (PEDV)-infected pregnant gilts would enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge. Gilts received daily oral retinyl acetate (30 000 IU) starting at gestation day 76 throughout lactation. At 3-4 weeks pre-partum, VA-supplemented (PEDV + VA) and non-supplemented (PEDV) gilts were PEDV or mock inoculated (mock + VA and mock, respectively). PEDV + VA gilts had decreased mean PEDV RNA shedding titers and diarrhea scores. To determine if lactogenic immunity correlated with protection, all piglets were PEDV-challenged at 3-5 days post-partum. The survival rate of PEDV + VA litters was 74.2% compared with 55.9% in PEDV litters. Mock and mock + VA litter survival rates were 5.7% and 8.3%, respectively. PEDV + VA gilts had increased PEDV IgA antibody secreting cells and PEDV IgA antibodies in serum pre-partum and IgA+ß7+ (gut homing) cells in milk post piglet challenge compared with PEDV gilts. Our findings suggest that oral VA supplementation may act as an adjuvant during pregnancy, enhancing maternal IgA and lactogenic immune protection in nursing piglets.


Assuntos
Imunidade Materno-Adquirida/imunologia , Imunoglobulina A/imunologia , Sus scrofa/imunologia , Vitamina A/metabolismo , Vitaminas/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Vírus da Diarreia Epidêmica Suína/imunologia , Distribuição Aleatória , Vitamina A/administração & dosagem , Vitaminas/administração & dosagem
4.
BMC Vet Res ; 15(1): 26, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634958

RESUMO

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) causes diarrhea in all ages of pigs with 50-100% mortality rates in neonatal piglets. In the United States, inactivated and subunit PEDV vaccines for pregnant sows are available, but fail to induce sufficient protection in neonatal piglets farrowed from PEDV naïve sows. A safe and efficacious live attenuated vaccine that can prime mucosal immune responses is urgently needed. In this study, we evaluated the safety and efficacy of two attenuated PEDV vaccine candidates, the emerging non-S INDEL PEDV strain PC22A at the 100th cell culture passage level - Clone no. 4 (P100C4) and at the 120th passage level (P120), in weaned pigs. RESULTS: Four groups of 40-day-old weaned pigs were inoculated orally with PEDV PC22A-P3 (virulent), -P100C4, -P120, and mock, respectively, and challenged with the P3 virus at 24 days post-inoculation (dpi). After inoculation, P3 caused diarrhea in all pigs with a high level of fecal viral RNA shedding. P100C4 and P120 did not cause diarrhea in pigs, although viral RNA was detected in feces of all pigs, except for one P100C4-inoculated pig. Compared with the P120 group, P3- and P100C4-inoculated pigs had higher serum PEDV-specific IgG and viral neutralizing (VN) antibody (Ab) titers at 14 dpi. After the challenge, no pigs in the P3 group but all pigs in the P100C4, P120, and mock groups had diarrhea. Compared with the P120 group, pigs in the P100C4 group had a more rapid decline in fecal PEDV RNA shedding titers, higher titers of serum PEDV-specific IgG, IgA, and VN Abs, and higher numbers of intestinal IgA Ab-secreting cells. CONCLUSIONS: PEDV PC22A P100C4 and P120 were fully attenuated in weaned pigs but failed to elicit protection against virulent P3 challenge. P100C4 induced higher PEDV-specific antibody responses than P120 post inoculation resulting in a greater anamnestic response post challenge. Therefore, P100C4 potentially could be tested as a priming vaccine or be further modified using reverse genetics. It also can be administered in multiple doses or be combined with inactivated or subunit vaccines and adjuvants as a PEDV vaccination regimen, whose efficacy can be tested in the future.


Assuntos
Infecções por Coronavirus/veterinária , Imunogenicidade da Vacina , Vírus da Diarreia Epidêmica Suína/imunologia , Vacinas Virais/imunologia , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Diarreia/imunologia , Diarreia/prevenção & controle , Diarreia/veterinária , Vírus da Diarreia Epidêmica Suína/patogenicidade , Distribuição Aleatória , Suínos , Vacinas Atenuadas/imunologia , Desmame
5.
BMC Gastroenterol ; 18(1): 93, 2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-29929472

RESUMO

BACKGROUND: Human rotavirus (HRV) is a major cause of viral gastroenteritis in infants; particularly in developing countries where malnutrition is prevalent. Malnutrition perturbs the infant gut microbiota leading to sub-optimal functioning of the immune system and further predisposing infants to enteric infections. Therefore, we hypothesized that malnutrition exacerbates rotavirus disease severity in infants. METHODS: In the present study, we used a neonatal germ free (GF) piglets transplanted with a two-month-old human infant's fecal microbiota (HIFM) on protein deficient and sufficient diets. We report the effects of malnourishment on the HRV infection and the HIFM pig microbiota in feces, intestinal and systemic tissues, using MiSeq 16S gene sequencing (V4-V5 region). RESULTS: Microbiota analysis indicated that the HIFM transplantation resulted in a microbial composition in pigs similar to that of the original infant feces. This model was then used to understand the interconnections between microbiota diversity, diet, and HRV infection. Post HRV infection, HIFM pigs on the deficient diet had lower body weights, developed more severe diarrhea and increased virus shedding compared to HIFM pigs on sufficient diet. However, HRV induced diarrhea and shedding was more pronounced in non-colonized GF pigs compared to HIFM pigs on either sufficient or deficient diet, suggesting that the microbiota alone moderated HRV infection. HRV infected pigs on sufficient diet showed increased microbiota diversity in intestinal tissues; whereas, greater diversity was observed in systemic tissues of HRV infected pigs fed with deficient diet. CONCLUSIONS: These results suggest that proper nourishment improves the microbiota quality in the intestines, alleviates HRV disease and lower probability of systemic translocation of potential opportunistic pathogens/pathobionts. In conclusion, our findings further support the role for microbiota and proper nutrition in limiting enteric diseases.


Assuntos
Gastroenterite/complicações , Gastroenterite/microbiologia , Microbioma Gastrointestinal , Desnutrição/complicações , Desnutrição/microbiologia , Infecções por Rotavirus/complicações , Infecções por Rotavirus/microbiologia , Animais , Diarreia/microbiologia , Diarreia/virologia , Suscetibilidade a Doenças , Fezes/microbiologia , Gastroenterite/virologia , Humanos , Lactente , Intestinos/microbiologia , Desnutrição/virologia , RNA Ribossômico 16S , Infecções por Rotavirus/virologia , Análise de Sequência de RNA , Suínos , Eliminação de Partículas Virais , Aumento de Peso
6.
J Immunol ; 196(4): 1780-9, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800875

RESUMO

Rotavirus (RV) causes significant morbidity and mortality in children worldwide. The intestinal microbiota plays an important role in modulating host-pathogen interactions, but little is known about the impact of commonly used probiotics on human RV (HRV) infection. In this study, we compared the immunomodulatory effects of Gram-positive (Lactobacillus rhamnosus strain GG [LGG]) and Gram-negative (Escherichia coli Nissle [EcN]) probiotic bacteria on virulent human rotavirus (VirHRV) infection and immunity using neonatal gnotobiotic piglets. Gnotobiotic piglets were colonized with EcN, LGG, or EcN+LGG or uncolonized and challenged with VirHRV. Mean peak virus shedding titers and mean cumulative fecal scores were significantly lower in EcN-colonized compared with LGG-colonized or uncolonized piglets. Reduced viral shedding titers were correlated with significantly reduced small intestinal HRV IgA Ab responses in EcN-colonized compared with uncolonized piglets post-VirHRV challenge. However the total IgA levels post-VirHRV challenge in the intestine and pre-VirHRV challenge in serum were significantly higher in EcN-colonized than in LGG-colonized piglets. In vitro treatment of mononuclear cells with these probiotics demonstrated that EcN, but not LGG, induced IL-6, IL-10, and IgA, with the latter partially dependent on IL-10. However, addition of exogenous recombinant porcine IL-10 + IL-6 to mononuclear cells cocultured with LGG significantly enhanced IgA responses. The greater effectiveness of EcN in moderating HRV infection may also be explained by the binding of EcN but not LGG to Wa HRV particles or HRV 2/4/6 virus-like particles but not 2/6 virus-like particles. Results suggest that EcN and LGG differentially modulate RV infection and B cell responses.


Assuntos
Escherichia coli/imunologia , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Lacticaseibacillus rhamnosus/imunologia , Infecções por Rotavirus/microbiologia , Animais , Linfócitos B/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Escherichia coli/metabolismo , Citometria de Fluxo , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/farmacologia , Rotavirus/imunologia , Infecções por Rotavirus/imunologia , Suínos
7.
Eur J Immunol ; 46(10): 2426-2437, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27457183

RESUMO

Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.


Assuntos
Células Dendríticas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Mucosa Intestinal/imunologia , Células Matadoras Naturais/imunologia , Lacticaseibacillus rhamnosus/imunologia , Infecções por Rotavirus/imunologia , Rotavirus/imunologia , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/metabolismo , Citotoxicidade Imunológica , Células Dendríticas/virologia , Vida Livre de Germes , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Probióticos , Suínos
8.
J Virol ; 90(1): 142-51, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468523

RESUMO

UNLABELLED: The changing epidemiology of group A rotavirus (RV) strains in humans and swine, including emerging G9 strains, poses new challenges to current vaccines. In this study, we comparatively assessed the pathogenesis of porcine RV (PRV) G9P[13] and evaluated the short-term cross-protection between this strain and human RV (HRV) Wa G1P[8] in gnotobiotic pigs. Complete genome sequencing demonstrated that PRV G9P[13] possessed a human-like G9 VP7 genotype but shared higher overall nucleotide identity with historic PRV strains. PRV G9P[13] induced longer rectal virus shedding and RV RNAemia in pigs than HRV Wa G1P[8] and generated complete short-term cross-protection in pigs challenged with HRV or PRV, whereas HRV Wa G1P[8] induced only partial protection against PRV challenge. Moreover, PRV G9P[13] replicated more extensively in porcine monocyte-derived dendritic cells (MoDCs) than did HRV Wa G1P[8]. Cross-protection was likely not dependent on serum virus-neutralizing (VN) antibodies, as the heterologous VN antibody titers in the sera of G9P[13]-inoculated pigs were low. Thus, our results suggest that heterologous protection by the current monovalent G1P[8] HRV vaccine against emerging G9 strains should be evaluated in clinical and experimental studies to prevent further dissemination of G9 strains. Differences in the pathogenesis of these two strains may be partially attributable to their variable abilities to replicate and persist in porcine immune cells, including dendritic cells (DCs). Additional studies are needed to evaluate the emerging G9 strains as potential vaccine candidates and to test the susceptibility of various immune cells to infection by G9 and other common HRV/PRV genotypes. IMPORTANCE: The changing epidemiology of porcine and human group A rotaviruses (RVs), including emerging G9 strains, may compromise the efficacy of current vaccines. An understanding of the pathogenesis and genetic, immunological, and biological features of the new emerging RV strains will contribute to the development of new surveillance and prevention tools. Additionally, studies of cross-protection between the newly identified emerging G9 porcine RV strains and a human G1 RV vaccine strain in a susceptible host (swine) will allow evaluation of G9 strains as potential novel vaccine candidates to be included in porcine or human vaccines.


Assuntos
Proteção Cruzada , Genótipo , Rotavirus/imunologia , Rotavirus/fisiologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Proteínas do Capsídeo/genética , Células Dendríticas/virologia , Genoma Viral , Vida Livre de Germes , Humanos , RNA Viral , Reto/virologia , Rotavirus/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Suínos , Viremia , Replicação Viral , Eliminação de Partículas Virais
10.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746153

RESUMO

Noroviruses are the leading global cause of acute gastroenteritis, responsible for 685 million annual cases. While all age groups are susceptible to noroviruses, children are vulnerable to more severe infections than adults, underscored by 200 million pediatric cases and up to 200,000 deaths in children annually. Understanding the basis for the increased vulnerability of young hosts is critical to developing effective treatments. The pathogenic outcome of any enteric virus infection is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors. A central mediator in these complex relationships are host- and microbiota-derived metabolites. Noroviruses bind a specific class of metabolites, bile acids, which are produced by the host and then modified by commensal bacterial enzymes. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Considering these opposing effects, the microbiota-regulated balance of the bile acid pool may be a key determinant of the pathogenic outcome of a norovirus infection. The bile acid pool in newborns is unique due to immaturity of host metabolic pathways and developing gut microbiota, which could underlie the vulnerability of these hosts to severe norovirus infections. Supporting this concept, we demonstrate herein that microbiota and their bile acid metabolites protect from severe norovirus diarrhea whereas host-derived bile acids promote disease. Remarkably, we also report that maternal bile acid metabolism determines neonatal susceptibility to norovirus diarrhea during breastfeeding by delivering proviral bile acids to the newborn. Finally, directed targeting of maternal and neonatal bile acid metabolism can protect the neonatal host from norovirus disease. Altogether, these data support the conclusion that metabolic immaturity in newborns and ingestion of proviral maternal metabolites in breast milk are the central determinants of heightened neonatal vulnerability to norovirus disease.

11.
Cell Host Microbe ; 32(9): 1488-1501.e5, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39214086

RESUMO

The pathogenic outcome of enteric virus infections is governed by a complex interplay between the virus, intestinal microbiota, and host immune factors, with metabolites serving as a key mediator. Noroviruses bind bile acid metabolites, which are produced by the host and then modified by commensal bacteria. Paradoxically, bile acids can have both proviral and antiviral roles during norovirus infections. Working in an infant mouse model of norovirus infection, we demonstrate that microbiota and their bile acid metabolites protect from norovirus diarrhea, whereas host bile acids promote disease. We also find that maternal bile acid metabolism determines the susceptibility of newborn mice to norovirus diarrhea during breastfeeding. Finally, targeting maternal and neonatal bile acid metabolism can protect newborn mice from norovirus disease. In summary, neonatal metabolic immaturity and breastmilk bile acids are central determinants of heightened newborn vulnerability to norovirus disease.


Assuntos
Animais Recém-Nascidos , Ácidos e Sais Biliares , Infecções por Caliciviridae , Diarreia , Modelos Animais de Doenças , Microbioma Gastrointestinal , Leite Humano , Norovirus , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Leite Humano/virologia , Leite Humano/metabolismo , Diarreia/virologia , Diarreia/metabolismo , Feminino , Humanos , Camundongos Endogâmicos C57BL
12.
Sci Immunol ; 8(84): eadi8769, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37276436

RESUMO

Endogenous retrovirus antibody responses contribute to survival after immune checkpoint blockade therapy against lung adenocarcinoma.


Assuntos
Neoplasias Pulmonares , Receptor de Morte Celular Programada 1 , Humanos , Anticorpos
13.
Microbiol Spectr ; 11(6): e0471722, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37882564

RESUMO

IMPORTANCE: The main route of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is airborne. However, there are few experimental systems that can assess the airborne transmission dynamics of SARS-CoV-2 in vivo. Here, we designed, built, and characterized a hamster transmission caging and exposure system that allows for efficient SARS-CoV-2 airborne transmission in Syrian hamsters without contributions from fomite or direct contact transmission. We successfully measured SARS-CoV-2 viral RNA in aerosols and demonstrated that SARS-CoV-2 is transmitted efficiently at either a 1:1 or 1:4 infected index to naïve recipient hamster ratio. This is meaningful as a 1:4 infected index to naïve hamster ratio would allow for simultaneous comparisons of various interventions in naïve animals to determine their susceptibility to infection by aerosol transmission of SARS-CoV-2. Our SARS-CoV-2 exposure system allows for testing viral airborne transmission dynamics and transmission-blocking therapeutic strategies against SARS-CoV-2 in Syrian hamsters.


Assuntos
COVID-19 , SARS-CoV-2 , Cricetinae , Animais , Mesocricetus , Aerossóis e Gotículas Respiratórios , Modelos Animais de Doenças
14.
Cell Host Microbe ; 30(5): 660-674, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35550669

RESUMO

The maternal immune system protects developing offspring against pathogens before birth via transplacental transfer and after birth through secreted milk. This transferred maternal immunity influences each generation's susceptibility to infections and responsiveness to immunization. Thus, boosting immunity in the maternal-neonatal dyad is a potentially valuable public health strategy. Additionally, at critical times during fetal and postnatal development, environmental factors and immune stimuli influence immune development. These "windows of opportunity" offer a chance to identify both risk and protective factors that promote long-term health and limit disease. Here, we review pre- and postpartum maternal immune factors that protect against infectious agents in offspring and how they may shape the infant's immune landscape over time. Additionally, we discuss the influence of maternal immunity on the responsiveness to immunization in early life. Lastly, when maternal factors are insufficient to prevent neonatal infectious diseases, we discuss pre- and postnatal therapeutic strategies for the maternal-neonatal dyad.


Assuntos
Doenças Transmissíveis , Imunização , Animais , Feminino , Humanos , Imunidade Materno-Adquirida , Fatores Imunológicos , Lactente , Recém-Nascido , Leite , Vacinação
15.
Sci Transl Med ; 14(658): eabn6868, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35511920

RESUMO

Transmission-blocking strategies that slow the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and protect against coronavirus disease 2019 (COVID-19) are needed. We have developed an orally delivered adenovirus type 5-vectored SARS-CoV-2 vaccine candidate that expresses the spike protein. Here, we demonstrated that hamsters vaccinated by the oral or intranasal route had robust and cross-reactive antibody responses. We then induced a postvaccination infection by inoculating vaccinated hamsters with SARS-CoV-2. Orally or intranasally vaccinated hamsters had decreased viral RNA and infectious virus in the nose and lungs and experienced less lung pathology compared to mock-vaccinated hamsters after SARS-CoV-2 challenge. Naïve hamsters exposed in a unidirectional air flow chamber to mucosally vaccinated, SARS-CoV-2-infected hamsters also had lower nasal swab viral RNA and exhibited fewer clinical symptoms than control animals, suggesting that the mucosal route reduced viral transmission. The same platform encoding the SARS-CoV-2 spike and nucleocapsid proteins elicited mucosal cross-reactive SARS-CoV-2-specific IgA responses in a phase 1 clinical trial (NCT04563702). Our data demonstrate that mucosal immunization is a viable strategy to decrease SARS-CoV-2 disease and airborne transmission.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adenoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Ensaios Clínicos Fase I como Assunto , Cricetinae , Humanos , RNA Viral , SARS-CoV-2 , Índice de Gravidade de Doença
16.
Cell Death Discov ; 8(1): 64, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169120

RESUMO

Diacetyl (DA) is an α-diketone that is used to flavor microwave popcorn, coffee, and e-cigarettes. Occupational exposure to high levels of DA causes impaired lung function and obstructive airway disease. Additionally, lower levels of DA exposure dampen host defenses in vitro. Understanding DA's impact on lung epithelium is important for delineating exposure risk on lung health. In this study, we assessed the impact of DA on normal human bronchial epithelial cell (NHBEC) morphology, transcriptional profiles, and susceptibility to SARS-CoV-2 infection. Transcriptomic analysis demonstrated cilia dysregulation, an increase in hypoxia and sterile inflammation associated pathways, and decreased expression of interferon-stimulated genes after DA exposure. Additionally, DA exposure resulted in cilia loss and increased hyaluronan production. After SARS-CoV-2 infection, both genomic and subgenomic SARS-CoV-2 RNA were increased in DA vapor- compared to vehicle-exposed NHBECs. This work suggests that transcriptomic and physiologic changes induced by DA vapor exposure damage cilia and increase host susceptibility to SARS-CoV-2.

17.
Vaccines (Basel) ; 10(1)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35062744

RESUMO

Human rotavirus (HRV) infection is a major cause of viral gastroenteritis in young children worldwide. Current oral vaccines perform poorly in developing countries where efficacious vaccines are needed the most. Therefore, an alternative affordable strategy to enhance efficacy of the current RV vaccines is necessary. This study evaluated the effects of colonization of neonatal gnotobiotic (Gn) pigs with Escherichia coli Nissle (EcN) 1917 and Lacticaseibacillus rhamnosus GG (LGG) probiotics on immunogenicity and protective efficacy of oral attenuated (Att) HRV vaccine. EcN-colonized pigs had reduced virulent HRV (VirHRV) shedding and decreased diarrhea severity compared with the LGG-colonized group. They also had enhanced HRV-specific IgA antibody titers in serum and antibody secreting cell numbers in tissues pre/post VirHRV challenge, HRV-specific IgA antibody titers in intestinal contents, and B-cell subpopulations in tissues post VirHRV challenge. EcN colonization also enhanced T-cell immune response, promoted dendritic cells and NK cell function, reduced production of proinflammatory cytokines/Toll like receptor (TLR), and increased production of immunoregulatory cytokines/TLR expression in various tissues pre/post VirHRV challenge. Thus, EcN probiotic adjuvant with AttHRV vaccine enhances the immunogenicity and protective efficacy of AttHRV to a greater extent than LGG and it can be used as a safe and economical oral vaccine adjuvant.

18.
Immunohorizons ; 6(12): 851-863, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36547390

RESUMO

The global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated coronavirus disease (COVID-19) has led to a pandemic of unprecedented scale. An intriguing feature of the infection is the minimal disease in most children, a demographic at higher risk for other respiratory viral diseases. To investigate age-dependent effects of SARS-CoV-2 pathogenesis, we inoculated two rhesus macaque monkey dam-infant pairs with SARS-CoV-2 and conducted virological and transcriptomic analyses of the respiratory tract and evaluated systemic cytokine and Ab responses. Viral RNA levels in all sampled mucosal secretions were comparable across dam-infant pairs in the respiratory tract. Despite comparable viral loads, adult macaques showed higher IL-6 in serum at day 1 postinfection whereas CXCL10 was induced in all animals. Both groups mounted neutralizing Ab responses, with infants showing a more rapid induction at day 7. Transcriptome analysis of tracheal airway cells isolated at day 14 postinfection revealed significant upregulation of multiple IFN-stimulated genes in infants compared with adults. In contrast, a profibrotic transcriptomic signature with genes associated with cilia structure and function, extracellular matrix composition and metabolism, coagulation, angiogenesis, and hypoxia was induced in adults compared with infants. Our study in rhesus macaque monkey dam-infant pairs suggests age-dependent differential airway responses to SARS-CoV-2 infection and describes a model that can be used to investigate SARS-CoV-2 pathogenesis between infants and adults.


Assuntos
COVID-19 , Animais , Macaca mulatta , Pulmão/patologia , SARS-CoV-2 , Replicação Viral
19.
iScience ; 24(12): 103412, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34786537

RESUMO

Currently available SARS-CoV-2 therapeutics are targeted toward moderately to severely ill patients and require intravenous infusions, with limited options for exposed or infected patients with no or mild symptoms. Although vaccines have demonstrated protective efficacy, vaccine hesitancy and logistical distribution challenges will delay their ability to end the pandemic. Hence, there is a need for rapidly translatable, easy-to-administer-therapeutics that can prevent SARS-CoV-2 disease progression, when administered in the early stages of infection. We demonstrate that an orally bioavailable Hsp90 inhibitor, SNX-5422, currently in clinical trials as an anti-cancer therapeutic, inhibits SARS-CoV-2 replication in vitro at a high selectivity index. SNX-5422 treatment of human primary airway epithelial cells dampened expression of inflammatory pathways previously associated with poor SARS-CoV-2 disease outcomes. In addition, SNX-5422 interrupted expression of host factors demonstrated to be crucial for SARS-CoV-2 replication. Development of SNX-5422 as SARS-CoV-2-early-therapy will dampen disease severity, resulting in better clinical outcomes and reduced hospitalizations.

20.
mSphere ; 6(2)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789939

RESUMO

Human rotavirus (HRV) infection is a major cause of gastroenteritis in children worldwide. Broad-spectrum antibiotic-induced intestinal microbial imbalance and the ensuing immune-metabolic dysregulation contribute to the persistence of HRV diarrhea. Escherichia coli Nissle 1917 (EcN), a Gram-negative probiotic, was shown to be a potent immunostimulant and alleviated HRV-induced diarrhea in monocolonized gnotobiotic (Gn) piglets. Our goal was to determine how EcN modulates immune responses in ciprofloxacin (Cipro)-treated Gn piglets colonized with a defined commensal microbiota (DM) and challenged with virulent HRV (VirHRV). Cipro given in therapeutic doses for a short term reduced serum and intestinal total and HRV-specific antibody titers, while EcN treatment alleviated this effect. Similarly, EcN treatment increased the numbers of total immunoglobulin-secreting cells, HRV-specific antibody-secreting cells, activated antibody-forming cells, resting/memory antibody-forming B cells, and naive antibody-forming B cells in systemic and/or intestinal tissues. Decreased levels of proinflammatory but increased levels of immunoregulatory cytokines and increased frequencies of Toll-like receptor-expressing cells were evident in the EcN-treated VirHRV-challenged group. Moreover, EcN treatment increased the frequencies of T helper and T cytotoxic cells in systemic and/or intestinal tissues pre-VirHRV challenge and the frequencies of T helper cells, T cytotoxic cells, effector T cells, and T regulatory cells in systemic and/or intestinal tissues postchallenge. Moreover, EcN treatment increased the frequencies of systemic and mucosal conventional and plasmacytoid dendritic cells, respectively, and the frequencies of systemic natural killer cells. Our findings demonstrated that Cipro use altered immune responses of DM-colonized neonatal Gn pigs, while EcN supplementation rescued these immune parameters partially or completely.IMPORTANCE Rotavirus (RV) is a primary cause of malabsorptive diarrhea in children and is associated with significant morbidity and mortality, especially in developing countries. The use of antibiotics exacerbates intestinal microbial imbalance and results in the persistence of RV-induced diarrhea. Probiotics are now being used to treat enteric infections and ulcerative colitis. We showed previously that probiotics partially protected gnotobiotic (Gn) piglets against human RV (HRV) infection and decreased the severity of diarrhea by modulating immune responses. However, the interactions between antibiotic and probiotic treatments and HRV infection in the context of an established gut microbiota are poorly understood. In this study, we developed a Gn pig model to study antibiotic-probiotic-HRV interactions in the context of a defined commensal microbiota (DM) that mimics aspects of the infant gut microbiota. Our results provide valuable information that will contribute to the treatment of antibiotic- and/or HRV-induced diarrhea and may be applicable to other enteric infections in children.


Assuntos
Imunidade Adaptativa , Antibacterianos/uso terapêutico , Ciprofloxacina/uso terapêutico , Escherichia coli/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata , Probióticos/administração & dosagem , Infecções por Rotavirus/prevenção & controle , Fatores Etários , Animais , Citocinas/imunologia , Modelos Animais de Doenças , Escherichia coli/classificação , Humanos , Rotavirus/imunologia , Infecções por Rotavirus/imunologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA