Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Clin Invest ; 134(9)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530366

RESUMO

Aberrant expression of the E26 transformation-specific (ETS) transcription factors characterizes numerous human malignancies. Many of these proteins, including EWS:FLI1 and EWS:ERG fusions in Ewing sarcoma (EwS) and TMPRSS2:ERG in prostate cancer (PCa), drive oncogenic programs via binding to GGAA repeats. We report here that both EWS:FLI1 and ERG bind and transcriptionally activate GGAA-rich pericentromeric heterochromatin. The respective pathogen-like HSAT2 and HSAT3 RNAs, together with LINE, SINE, ERV, and other repeat transcripts, are expressed in EwS and PCa tumors, secreted in extracellular vesicles (EVs), and are highly elevated in plasma of patients with EwS with metastatic disease. High human satellite 2 and 3 (HSAT2,3) levels in EWS:FLI1- or ERG-expressing cells and tumors were associated with induction of G2/M checkpoint, mitotic spindle, and DNA damage programs. These programs were also activated in EwS EV-treated fibroblasts, coincident with accumulation of HSAT2,3 RNAs, proinflammatory responses, mitotic defects, and senescence. Mechanistically, HSAT2,3-enriched cancer EVs induced cGAS-TBK1 innate immune signaling and formation of cytosolic granules positive for double-strand RNAs, RNA-DNA, and cGAS. Hence, aberrantly expressed ETS proteins derepress pericentromeric heterochromatin, yielding pathogenic RNAs that transmit genotoxic stress and inflammation to local and distant sites. Monitoring HSAT2,3 plasma levels and preventing their dissemination may thus improve therapeutic strategies and blood-based diagnostics.


Assuntos
Dano ao DNA , Vesículas Extracelulares , Proteínas de Fusão Oncogênica , Proteína Proto-Oncogênica c-fli-1 , Proteína EWS de Ligação a RNA , Regulador Transcricional ERG , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Masculino , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/imunologia , Linhagem Celular Tumoral , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Camundongos , Animais , Heterocromatina/metabolismo , Heterocromatina/genética
2.
SN Appl Sci ; 3(12): 857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790889

RESUMO

Robotics and artificial intelligence (AI) are revolutionizing all spheres of human life. From industrial processes to graphic design, the implementation of automated intelligent systems is changing how industries work. The spread of robots and AI systems has triggered academic institutions to closely examine how these technologies may affect the humanity-this is how the fields of roboethics and AI ethics have been born. The identification of ethical issues for robotics and AI and creation of ethical frameworks were the first steps to creating a regulatory environment for these technologies. In this paper, we focus on regulatory efforts in Europe and North America to create enforceable regulation for AI and robotics. We describe and compare ethical principles, policies, and regulations that have been proposed by government organizations for the design and use of robots and AI. We also discuss proposed international regulation for robotics and AI. This paper tries to highlight the need for a comprehensive, enforceable, and agile policy to ethically regulate technology today and in the future. Through reviewing existing policies, we conclude that the European Unition currently leads the way in defining roboethics and AI ethical principles and implementing them into policy. Our findings suggest that governments in Europe and North America are aware of the ethical risks that robotics and AI pose, and are engaged in policymaking to create regulatory policies for these new technologies.

3.
Front Robot AI ; 8: 612740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026856

RESUMO

The COVID-19 pandemic has caused dramatic effects on the healthcare system, businesses, and education. In many countries, businesses were shut down, universities and schools had to cancel in-person classes, and many workers had to work remotely and socially distance in order to prevent the spread of the virus. These measures opened the door for technologies such as robotics and artificial intelligence to play an important role in minimizing the negative effects of such closures. There have been many efforts in the design and development of robotic systems for applications such as disinfection and eldercare. Healthcare education has seen a lot of potential in simulation robots, which offer valuable opportunities for remote learning during the pandemic. However, there are ethical considerations that need to be deliberated in the design and development of such systems. In this paper, we discuss the principles of roboethics and how these can be applied in the new era of COVID-19. We focus on identifying the most relevant ethical principles and apply them to a case study in dentistry education. DenTeach was developed as a portable device that uses sensors and computer simulation to make dental education more efficient. DenTeach makes remote instruction possible by allowing students to learn and practice dental procedures from home. We evaluate DenTeach on the principles of data, common good, and safety, and highlight the importance of roboethics in Canada. The principles identified in this paper can inform researchers and educational institutions considering implementing robots in their curriculum.

4.
Cancer Discov ; 11(11): 2884-2903, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021002

RESUMO

Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Anoikis , Proteína Acessória do Receptor de Interleucina-1 , Sarcoma de Ewing , Adulto , Linhagem Celular Tumoral , Criança , Humanos , Proteômica , Receptores de Interleucina-1 , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
5.
Vaccine ; 36(21): 3054-3060, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29655625

RESUMO

The induction of an antibody response against self-antigens requires a conjugate vaccine technology, where the self-antigen is conjugated to a foreign protein sequence, and the co-application of a potent adjuvant. The choice of this foreign sequence is crucial as a very strong antibody response towards it may compromise the anti-self immune response. Here, we aimed to optimize the conjugate design for application of vaccination against the tumor vasculature, using two different approaches. First, the immunogenicity of the previously employed bacterial thioredoxin (TRX) was reduced by using a truncated from (TRXtr). Second, the Escherichia coli proteome was scrutinized to identify alternative proteins, based on immunogenicity and potency to increase solubility, suitable for use in a conjugate vaccine. This technology was used for vaccination against a marker of the tumor vasculature, the well-known extra domain B (EDB) of fibronectin. We demonstrate that engineering of the foreign sequence of a conjugate vaccine can significantly improve antibody production. The TRXtr construct outperformed the one containing full-length TRX, for the production of anti-self antibodies to EDB. In addition, efficient tumor growth inhibition was observed with the new TRXtr-EDB vaccine. Microvessel density was decreased and enhanced leukocyte infiltration was observed, indicative of an active immune response directed against the tumor vasculature. Summarizing, we have identified a truncated form of the foreign antigen TRX that can improve conjugate vaccine technology for induction of anti-self antibody titers. This technology was named Immuno-Boost (I-Boost). Our findings are important for the clinical development of cancer vaccines directed against self antigens, e.g. the ones selectively found in the tumor vasculature.


Assuntos
Anticorpos Antineoplásicos/sangue , Vacinas Anticâncer/imunologia , Neoplasias/terapia , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Anticâncer/administração & dosagem , Feminino , Fibronectinas/genética , Fibronectinas/imunologia , Fibrossarcoma/patologia , Imuno-Histoquímica , Camundongos Endogâmicos C57BL , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA