Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 45(8): 6283-6295, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623215

RESUMO

The lipoxygenase (LOX) cascade is a source of bioactive oxylipins that play a regulatory role in plants, animals, and fungi. Soybean (Glycine max (L.) Merr.) LOXs are the classical models for LOX research. Progress in genomics has uncovered a large diversity of GmLOX isoenzymes. Most of them await biochemical investigations. The catalytic properties of recombinant soybean LOX2 (GmLOX2) are described in the present work. The GmLOX2 gene has been cloned before, but only for nucleotide sequencing, while the recombinant protein was not prepared and studied. In the present work, the recombinant GmLOX2 behavior towards linoleic, α-linolenic, eicosatetraenoic (20:4), eicosapentaenoic (20:5), and hexadecatrienoic (16:3) acids was examined. Linoleic acid was a preferred substrate. Oxidation of linoleic acid afforded 94% optically pure (13S)-hydroperoxide and 6% racemic 9-hydroperoxide. GmLOX2 was less active on other substrates but possessed an even higher degree of regio- and stereospecificity. For example, it converted α-linolenic acid into (13S)-hydroperoxide at about 98% yield. GmLOX2 showed similar specificity towards other substrates, producing (15S)-hydroperoxides (with 20:4 and 20:5) or (11S)-hydroperoxide (with 16:3). Thus, the obtained data demonstrate that soybean GmLOX2 is a specific (13S)-LOX. Overall, the catalytic properties of GmLOX2 are quite similar to those of GmLOX1, but pH is optimum.

2.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629162

RESUMO

The GC-MS profiling of the endogenous oxylipins (Me/TMS) from cucumber (Cucumis sativus L.) leaves, flowers, and fruit peels revealed a remarkable abundance of 16-hydroxy-9,12,14-octadecatrienoic acid (16-HOT). Incubations of homogenates from these organs with α-linolenic acid yielded 16(S)-hydroperoxide (16-HPOT) as a predominant product. Targeted proteomic analyses of these tissues revealed the presence of several highly homologous isoforms of the putative "9S-lipoxygenase type 6". One of these isoenzymes (CsLOX3, an 877 amino acid polypeptide) was prepared by heterologous expression in E. coli and exhibited 16(S)- and 13(S)-lipoxygenase activity toward α-linolenic and linoleic acids, respectively. Furthermore, α-linolenate was a preferred substrate. The molecular structures of 16(S)-HOT and 16(S)-HPOT (Me or Me/TMS) were unequivocally confirmed by the mass spectral data, 1H-NMR, 2D 1H-1H-COSY, TOCSY, HMBC, and HSQC spectra, as well as enantiomeric HPLC analyses. Thus, the vegetative CsLOX3, biosynthesizing 16(S)-HPOT, is the first 16(S)-LOX and ω3-LOX ever discovered. Eicosapentaenoic and hexadecatrienoic acids were also specifically transformed to the corresponding ω3(S)-hydroperoxides by CsLOX3.


Assuntos
Cucumis sativus , Ácidos Graxos Ômega-3 , Cucumis sativus/genética , Ácido alfa-Linolênico , Escherichia coli , Proteômica , Peróxido de Hidrogênio , Lipoxigenases
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768554

RESUMO

The product specificity and mechanistic peculiarities of two allene oxide synthases, tomato LeAOS3 (CYP74C3) and maize ZmAOS (CYP74A19), were studied. Enzymes were vortexed with linoleic acid 9-hydroperoxide in a hexane-water biphasic system (20-60 s, 0 °C). Synthesized allene oxide (9,10-epoxy-10,12-octadecadienoic acid; 9,10-EOD) was trapped with ethanol. Incubations with ZmAOS produced predominantly 9,10-EOD, which was converted into an ethanolysis product, (12Z)-9-ethoxy-10-oxo-12-octadecenoic acid. LeAOS3 produced the same trapping product and 9(R)-α-ketol at nearly equimolar yields. Thus, both α-ketol and 9,10-EOD appeared to be kinetically controlled LeAOS3 products. NMR data for 9,10-EOD (Me) preparations revealed that ZmAOS specifically synthesized 10(E)-9,10-EOD, whereas LeAOS3 produced a roughly 4:1 mixture of 10(E) and 10(Z) isomers. The cyclopentenone cis-10-oxo-11-phytoenoic acid (10-oxo-PEA) and the Favorskii-type product yields were appreciable with LeAOS3, but dramatically lower with ZmAOS. The 9,10-EOD (free acid) kept in hexane transformed into macrolactones but did not cyclize. LeAOS3 catalysis is supposed to produce a higher proportion of oxyallyl diradical (a valence tautomer of allene oxide), which is a direct precursor of both cyclopentenone and cyclopropanone. This may explain the substantial yields of cis-10-oxo-PEA and the Favorskii-type product (via cyclopropanone) with LeAOS3. Furthermore, 10(Z)-9,10-EOD may be produced via the reverse formation of allene oxide from oxyallyl diradical.


Assuntos
Óxidos , Solanum lycopersicum , Zea mays , Hexanos
4.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947016

RESUMO

The CYP74 clan cytochromes (P450) are key enzymes of oxidative metabolism of polyunsaturated fatty acids in plants, some Proteobacteria, brown and green algae, and Metazoa. The CYP74 enzymes, including the allene oxide synthases (AOSs), hydroperoxide lyases, divinyl ether synthases, and epoxyalcohol synthases (EASs) transform the fatty acid hydroperoxides to bioactive oxylipins. A novel CYP74 clan enzyme CYP440A18 of the Asian (Belcher's) lancelet (Branchiostoma belcheri, Chordata) was biochemically characterized in the present work. The recombinant CYP440A18 enzyme was active towards all substrates used: linoleate and α-linolenate 9- and 13-hydroperoxides, as well as with eicosatetraenoate and eicosapentaenoate 15-hydroperoxides. The enzyme specifically converted α-linolenate 13-hydroperoxide (13-HPOT) to the oxiranyl carbinol (9Z,11R,12R,13S,15Z)-11-hydroxy-12,13-epoxy-9,15-octadecadienoic acid (EAS product), α-ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (AOS product), and cis-12-oxo-10,15-phytodienoic acid (AOS product) at a ratio of around 35:5:1. Other hydroperoxides were converted by this enzyme to the analogous products. In contrast to other substrates, the 13-HPOT and 15-HPEPE yielded higher proportions of α-ketols, as well as the small amounts of cyclopentenones, cis-12-oxo-10,15-phytodienoic acid and its higher homologue, dihomo-cis-12-oxo-3,6,10,15-phytotetraenoic acid, respectively. Thus, the CYP440A18 enzyme exhibited dual EAS/AOS activity. The obtained results allowed us to ascribe a name "B. belcheri EAS/AOS" (BbEAS/AOS) to this enzyme. BbEAS/AOS is a first CYP74 clan enzyme of Chordata species possessing AOS activity.


Assuntos
Sistema Enzimático do Citocromo P-450/isolamento & purificação , Anfioxos/enzimologia , Alcadienos/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Anfioxos/genética , Oxilipinas/metabolismo , Filogenia , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
5.
Phytochemistry ; 224: 114151, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768880

RESUMO

The plant lipoxygenase cascade is a source of various regulatory oxylipins that play a role in cell signalling, stress adaptation, and immune response. Recently, we detected an unprecedented 16(S)-lipoxygenase, CsLOX3, in the leaves and fruit pericarp of cucumber (Cucumis sativus L.). In the present work, an array of products biosynthesized through the conversions of α-linolenic acid 16-hydroperoxide (16-HPOT) was detected. Firstly, a prominent 15-hydroxy-9,12-pentadecadienoic acid (Me/TMS) was detected, the product of hydroperoxide lyase (HPL) chain cleavage of 16-HPOT and further reduction of aldehyde 15-oxo-9,12-pentadecadienoic acid to alcohol. Besides, the presence of dicarboxylic acid, 3,6-pentadecadiene-1,15-dioic acid, was deduced from the detection of its catalytic hydrogenation product, pentadecane-1,15-dioic acid. Finally, 12,15-dihydroxypentadecanoic acid (Me/TMS) was detected amongst the hydrogenated products, thus indicating the presence of the parent 12,15-dihydroxy-9,13-pentadecadienoic acid. To confirm the proposed HPL chain cleavage, the 16(S)-HPOT was prepared and incubated with the recombinant cucumber HPL CYP74B6 enzyme. The CYP74B6 possessed high activity towards 16-HPOT. Chain cleavage yields the (9Z,12Z)-15-oxo-9,12-pentadecadienoic acid, undergoing a spontaneous isomerization into (9Z,13E)-15-oxo-9,13-pentadecadienoic acid. Thus, the cucumber plants as well as the recombinant cucumber HPL CYP74B6 possessed unprecedented 16-HPL activity, cleaving 16-HPOT into a C15 fragment, 15-oxo-9,12-pentadecadienoic acid, and a complementary volatile C3 fragment, propionic aldehyde. The 16-LOX/16-HPL route of oxylipin biosynthesis presents a novel facet of the plant LOX pathway.


Assuntos
Aldeído Liases , Cucumis sativus , Sistema Enzimático do Citocromo P-450 , Oxilipinas , Cucumis sativus/metabolismo , Cucumis sativus/enzimologia , Aldeído Liases/metabolismo , Aldeído Liases/química , Oxilipinas/metabolismo , Oxilipinas/química , Oxilipinas/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Estrutura Molecular
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159507, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740178

RESUMO

The present work reports the detection and cloning of a new CYP74 clan gene of the European lancelet (Branchiostoma lanceolatum) and the biochemical characterization of the recombinant protein CYP440A19. CYP440A19 possessed epoxyalcohol synthase (EAS) activity towards the 13-hydroperoxides of linoleic and α-linolenic acids, which were converted into oxiranylcarbinols, i.e., (11S,12R,13S)-11-hydroxy-12,13-epoxy derivatives. The conversion of 9-hydroperoxides produced distinct products. Linoleic acid 9(S)-hydroperoxide (9-HPOD) was mainly converted into 9,14-diol (10E,12E)-9,14-dihydroxy-10,12-octadecadienoic acid and macrolactone 9(S),10(R)-epoxy-11(E)-octadecen-13(S)-olide. In addition, (8Z)-colneleic acid was formed. Brief incubations of the enzyme with 9-HPOD in a biphasic system of hexane-water enabled the isolation of the short-lived 9,10-epoxydiene (9S,10R,11E,13E)-9,10-epoxy-11,13-octadecadienoic acid. The structure and stereochemistry of the epoxyalcohols, macrolactone, (8Z)-colneleic acid (Me), and 9,10-epoxydiene (Me) were confirmed by 1H-NMR, 1H-1H-COSY, 1H-13C-HSQC, and 1H-13C-HMBC spectroscopy. Macrolactone and cis-9,10-epoxydiene are novel products. The 9-hydroperoxide of α-linolenic acid was mainly converted into macrolactone 9(S),10(R)-epoxy-11(E),15(Z)-octadecadiene-13(S)-olide and a minority of divinyl ethers, particularly (8Z)-colnelenic acid. The versatility of enzyme catalysis, as well as the diversity of CYP74s and other enzymes involved in oxylipin biosynthesis, demonstrates the complexity of the lipoxygenase pathway in lancelets.


Assuntos
Sistema Enzimático do Citocromo P-450 , Oxilipinas , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Oxilipinas/metabolismo , Oxilipinas/química , Lactonas/metabolismo , Lactonas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ácidos Linoleicos , Peróxidos Lipídicos
7.
Chembiochem ; 12(16): 2511-7, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21928439

RESUMO

The allene oxide synthase (AOS) pathway is widespread in plants. Its products, such as cyclopentenone 12-oxo-10,15-phytodienoic acid (12-oxo-PDA) and related jasmonates, play important biological roles in plants. We found that 12-oxo-PDA in some plant tissues co-occur with an unknown minor oxylipin 1. In vitro incubations of AOSs with α-linolenic acid 13(S)-hydroperoxide reliably afforded 1 along with 12-oxo-PDA and α-ketol. A similar oxylipin 3 was formed during the AOS conversions of γ-linolenic acid 9(S)-hydroperoxide. Linoleic acid hydroperoxides formed neither products similar to 1 and 3 nor cyclopentenones. Oxylipins 1 and 3 were purified and identified as the products of Favorskii-type rearrangement, (2'Z,4Z)-2-(2'-pentenyl)-4-tridecene-1,13-dioic acid and (2'Z,4Z)-2-(2'-octenyl)-4-decene-1,10-dioic acid, respectively. Detection of Favorskii products 1 and 3 demonstrates that cyclopropanones are short-lived AOS products along with allene oxides. The observed parallels between the Favorskii product 1 and 12-oxo-PDA formation suggests that cyclopropanone is either a byproduct or a precursor of 12-oxo-PDA.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/síntese química , Ácidos Graxos Insaturados/química , Espectroscopia de Ressonância Magnética , Oxilipinas/química , Especificidade por Substrato
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(12): 159042, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34450267

RESUMO

The genome of the cabbage clubroot pathogen Plasmodiophora brassicae Woronin 1877 (Cercozoa, Rhizaria, SAR), possesses two expressed genes encoding the P450s that are phylogenetically related to the enzymes of oxylipin biosynthesis of the CYP74 clan. The cDNA of one of these genes (CYP50918A1) has been expressed in E. coli. The preferred substrate for the recombinant protein, the 13-hydroperoxide of α-linolenic acid (13-HPOT), was converted to the novel heterobicyclic oxylipins, plasmodiophorols A and B (1 and 2) at the ratio ca. 12:1. Compounds 1 and 2 were identified as the substituted 6-oxabicyclo[3.1.0]hexane and 2-oxabicyclo[2.2.1]heptane (respectively) using the MS and NMR spectroscopy, as well as the chemical treatments. The 18O labelling experiments revealed the incorporation of a single 18O atom from [18O2]13-HPOT into the epoxide and ether functions of products 1 and 2 (respectively), but not into their OH groups. In contrast, the 18O from [18O2]water was incorporated only into the hydroxyl functions. One more minor polar product, plasmodiophorol C (3), identified as the cyclopentanediol, was formed through the hydrolysis of compounds 1 and 2. Plasmodiophorols A-C are the congeners of egregiachlorides, hybridalactone, ecklonialactones and related bicyclic oxylipins detected before in some brown and red algae. The mechanism of 13-HPOT conversions to plasmodiophorols A and B involving the epoxyallylic cation intermediate is proposed. The hydroperoxide bicyclase CYP50918A1 is the first enzyme controlling this kind of fatty acid hydroperoxide conversion.


Assuntos
Peróxidos Lipídicos/genética , Oxilipinas/metabolismo , Plasmodioforídeos/genética , Prostaglandina-Endoperóxido Sintases/genética , Brassica/genética , Brassica/microbiologia , Peróxido de Hidrogênio/metabolismo , Peróxidos Lipídicos/metabolismo , Plasmodioforídeos/enzimologia , Plasmodioforídeos/patogenicidade , Prostaglandina-Endoperóxido Sintases/química , Prostaglandina-Endoperóxido Sintases/isolamento & purificação
9.
Phytochemistry ; 180: 112533, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33059187

RESUMO

The model moss Physcomitrella patens and liverwort Marchantia polymorpha possess all enzymatic machinery responsible for the initial stages of jasmonate pathway, including the active 13(S)-lipoxygenase, allene oxide synthase (AOS) and allene oxide cyclase (AOC). At the same time, the jasmonic acid is missing from both P. patens and M. polymorpha. Our GC-MS profiling of oxylipins of P. patens gametophores and M. polymorpha tissues revealed some distinctive peculiarities. The 15(Z)-cis-12-oxo-10,15-phytodienoic acid (12-OPDA) was the major oxylipin in M. polymorpha. In contrast, the 12-OPDA was only a minor constituent in P. patens, while another cyclopentenone 1 was the predominant oxylipin. Product 1 was identified by its MS, 1H-NMR, 1H-1H-COSY, HSQC and HMBC data as 15(Z)-12-oxo-9(13),15-phytodienoic acid, i.e., the iso-12-OPDA. The corresponding C16 homologue, 2,3-dinor-iso-12-OPDA (2), have also been detected as a minor component in P. patens and a prominent product in M. polymorpha. Besides, the 2,3-dinor-cis-12-OPDA (3) was also present in M. polymorpha. Apparently, the malfunction of cyclopentenone reduction by the 12-OPDA reductase in P. patens and (to a lesser extent) in M. polymorpha leads to the isomerization of 12-OPDA and formation of specific cyclopentenones 1 and 2, which are uncommon in flowering plants.


Assuntos
Bryopsida , Marchantia , Ciclopentanos , Ácidos Graxos Insaturados , Lipoxigenase , Marchantia/genética , Oxilipinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA