Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Drug Metab Dispos ; 45(6): 666-675, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28373266

RESUMO

Many genetic and environmental factors lead to interindividual variations in the metabolism and transport of drugs, profoundly affecting efficacy and toxicity. Precision dosing, that is, targeting drug dose to a well characterized subpopulation, is dependent on quantitative models of the profiles of drug-metabolizing enzymes (DMEs) and transporters within that subpopulation, informed by quantitative proteomics. We report the first use of ion mobility-mass spectrometry for this purpose, allowing rapid, robust, label-free quantification of human liver microsomal (HLM) proteins from distinct individuals. Approximately 1000 proteins were identified and quantified in four samples, including an average of 70 DMEs. Technical and biological variabilities were distinguishable, with technical variability accounting for about 10% of total variability. The biological variation between patients was clearly identified, with samples showing a range of expression profiles for cytochrome P450 and uridine 5'-diphosphoglucuronosyltransferase enzymes. Our results showed excellent agreement with previous data from targeted methods. The label-free method, however, allowed a fuller characterization of the in vitro system, showing, for the first time, that HLMs are significantly heterogeneous. Further, the traditional units of measurement of DMEs (pmol mg-1 HLM protein) are shown to introduce error arising from variability in unrelated, highly abundant proteins. Simulations of this variability suggest that up to 1.7-fold variation in apparent CYP3A4 abundance is artifactual, as are background positive correlations of up to 0.2 (Spearman correlation coefficient) between the abundances of DMEs. We suggest that protein concentrations used in pharmacokinetic predictions and scaling to in vivo clinical situations (physiologically based pharmacokinetics and in vitro-in vivo extrapolation) should be referenced instead to tissue mass.


Assuntos
Fígado/enzimologia , Fígado/metabolismo , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , Adulto , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Taxa de Depuração Metabólica/fisiologia , Pessoa de Meia-Idade , Proteômica/métodos
2.
Mass Spectrom Rev ; 32(1): 27-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22718314

RESUMO

Protein post-translational modifications (PTMs) are critically important in regulating both protein structure and function, often in a rapid and reversible manner. Due to its sensitivity and vast applicability, mass spectrometry (MS) has become the technique of choice for analyzing PTMs. Whilst the "bottom-up' analytical approach, in which proteins are proteolyzed generating peptides for analysis by MS, is routinely applied and offers some advantages in terms of ease of analysis and lower limit of detection, "top-down" MS, describing the analysis of intact proteins, yields unique and highly valuable information on the connectivity and therefore combinatorial effect of multiple PTMs in the same polypeptide chain. In this review, the state of the art in top-down MS will be discussed, covering the main instrumental platforms and ion activation techniques. Moreover, the way that this approach can be used to gain insights on the combinatorial effect of multiple post-translational modifications and how this information can assist in studying physiologically relevant systems at the molecular level will also be addressed.


Assuntos
Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Humanos , Proteínas/análise , Proteômica/métodos
3.
Rapid Commun Mass Spectrom ; 28(10): 1107-16, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24711274

RESUMO

RATIONALE: Intramolecular hydrogen bonds between a phosphate group and charged residues play a crucial role in the chemistry of phosphorylated peptides, driving the species to specific conformations and affecting the exposure of the phosphate moiety. The nature and extent of these interactions can be investigated by measuring the reactivity of phosphate groups toward selected substrates in the gas phase. METHODS: We used Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (MS) to perform a systematic study on the gas-phase ionic reactivity of phosphorylated amino acids and peptides with triethoxyborane (TEB). Ions of interest were generated by electrospray ionization (ESI), isolated in the cell of the FT-ICR mass spectrometer, and allowed to react with a stationary pressure of TEB. The temporal evolution of the reaction was monitored and thermal rate constants were derived. The structure of the ionic products was confirmed by Collision-Induced Dissociation (CID) tandem mass spectrometry (MS/MS). RESULTS: TEB was found to react with the phosphate of protonated phosphorylated amino acids and peptides by an addition-elimination pathway. The kinetic efficiency of the reaction showed a positive correlation with the charge state of the reagent ion, suggesting the existence of charge-state-dependent exposure of the phosphate groups towards the incoming neutral during the reaction. Isomeric phosphorylated peptides, only differing for the position of the modified serine residue, showed markedly different kinetic efficiencies. CONCLUSIONS: The ability of a phosphorylated species to react with TEB depends on the ease of access to the phosphate moiety in the corresponding gaseous ion. Measuring the kinetic efficiency of such reactions can represent a valuable tool to explore the accessibility of phosphate groups in biomolecules.


Assuntos
Aminoácidos/química , Boranos/química , Espectrometria de Massas/métodos , Peptídeos/química , Fosfatos/química , Aminoácidos/análise , Cinética , Peptídeos/análise , Fosfatos/análise , Prótons
4.
Int J Mass Spectrom ; 367: 28-34, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25844054

RESUMO

The hydrogen bonds and electrostatic interactions that form between the protonated side chain of a basic residue and the negatively charged phosphate of a phosphopeptide can play crucial roles in governing their dissociation pathways under low-energy collision-induced dissociation (CID). Understanding how phosphoramidate (i.e. phosphohistidine, phospholysine and phosphoarginine), rather than phosphomonoester-containing peptides behave during CID is paramount in investigation of these problematic species by tandem mass spectrometry. To this end, a synthetic peptide containing either phosphohistidine (pHis) or phospholysine (pLys) was analyzed by ESI-MS using a Paul-type ion trap (AmaZon, Bruker) and by traveling wave ion mobility-mass spectrometry (Synapt G2-Si, Waters). Analysis of the products of low-energy CID demonstrated formation of a doubly 'phosphorylated' product ion arising from intermolecular gas-phase phosphate transfer within a phosphopeptide dimer. The results are explained by the formation of a homodimeric phosphohistidine (pHis) peptide non-covalent complex (NCX), likely stabilized by the electrostatic interaction between the pHis phosphate group and the protonated C-terminal lysine residue of the peptide. To the best of our knowledge this is the first report of intermolecular gas-phase phosphate transfer from one phosphopeptide to another, leading to a doubly phosphorylated peptide product ion.

5.
Biochem Soc Trans ; 41(4): 1089-95, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23863184

RESUMO

A significant number of proteins in both eukaryotes and prokaryotes are known to be post-translationally modified by the addition of phosphate, serving as a means of rapidly regulating protein function. Phosphorylation of the amino acids serine, threonine and tyrosine are the focus of the vast majority of studies aimed at elucidating the extent and roles of such modification, yet other amino acids, including histidine and aspartate, are also phosphorylated. Although histidine phosphorylation is known to play extensive roles in signalling in eukaryotes, plants and fungi, roles for phosphohistidine are poorly defined in higher eukaryotes. Characterization of histidine phosphorylation aimed at elucidating such information is problematic due to the acid-labile nature of the phosphoramidate bond, essential for many of its biological functions. Although MS-based strategies have proven extremely useful in the analysis of other types of phosphorylated peptides, the chromatographic procedures essential for such approaches promote rapid hydrolysis of phosphohistidine-containing peptides. Phosphate transfer to non-biologically relevant aspartate residues during MS analysis further complicates the scenario.


Assuntos
Histidina/química , Peptídeos/química , Espectrometria de Massas , Fosforilação
6.
Chemistry ; 17(43): 12092-100, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21905135

RESUMO

The intrinsic reactivity of a manganese(V)-oxo porphyrin complex, a typically fleeting intermediate in catalytic oxidation reactions in solution, has been elucidated in a study focused on its gas-phase ion-chemistry. The naked high-valent Mn(V)-oxo porphyrin intermediate 1 ([(tpfpp)Mn(V)O](+); tpfpp=meso-tetrakis(pentafluorophenyl)porphinato dianion), has been obtained by controlled treatment of [(tpfpp)Mn(III)]Cl (2-Cl) with iodosylbenzene in methanol, delivered in the gas phase by electrospray ionization and assayed by FT-ICR mass spectrometry. A direct kinetic study of the reaction with selected substrates, each containing a heteroatom X (X=S, N, P) including amines, sulfides, and phosphites, was thus performed. Ionic products arising from electron transfer (ET), hydride transfer (HT), oxygen-atom transfer (OAT), and formal addition (Add) may be observed, with a predominance of two-electron processes, whereas the product of hydrogen-atom transfer (HAT), [(tpfpp)Mn(IV)OH](+), is never detected. A thermochemical threshold for the formation of the product radical cation allows an evaluation of the electron-transfer ability of a Mn(V)-oxo complex, yielding a lower limit of 7.85 eV for the ionization energy of gaseous [(tpfpp)Mn(IV)O]. Linear free-energy analyses of the reactions of para-substituted N,N-dimethylanilines and thioanisoles indicate that a considerable amount of positive charge is developed on the heteroatom in the oxidation transition state. Substrates endowed with different heteroatoms, but similar ionization energy display a comparable reaction efficiency, consistent with a mechanism initiated by ET. For the first time, the kinetic acidity of putative hydroxo intermediates playing a role in catalytic oxidations, [(tpfpp)Fe(IV)OH](+) and [(tpfpp)Mn(IV)OH](+), has been investigated with selected reference bases, revealing a comparatively higher basicity for the ferryl, [(tpfpp)Fe(IV)O], with respect to the manganyl, [(tpfpp)Mn(IV)O], unit. Finally, the neat association reaction of 2 has been studied with various ligands showing that harder ligands are more strongly bound.


Assuntos
Gases/química , Manganês/química , Metaloporfirinas/química , Porfirinas/química , Biomimética , Catálise , Elétrons , Cinética , Ligantes , Estrutura Molecular , Oxirredução
7.
Inorg Chem ; 50(10): 4445-52, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21476565

RESUMO

Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.


Assuntos
Complexos de Coordenação/química , Heme/química , Ferro/metabolismo , Metaloporfirinas/química , Óxido Nítrico/metabolismo , Complexos de Coordenação/metabolismo , Elétrons , Compostos Férricos/química , Compostos Ferrosos/química , Gases/metabolismo , Heme/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Metaloporfirinas/metabolismo , Modelos Químicos , Óxido Nítrico/química , Teoria Quântica , Soluções , Espectrometria de Massas por Ionização por Electrospray , Vibração
8.
J Am Chem Soc ; 132(12): 4336-43, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20218631

RESUMO

Oxygen-atom transfer reactions of metalloporphyrin species play an important role in biochemical and synthetic oxidation reactions. An emerging theme in this chemistry is that spin-state changes can play important roles, and a 'two-state' reactivity model has been extensively applied especially in iron porphyrin systems. Herein we explore the gas-phase oxygen-atom transfer chemistry of meso-tetrakis(pentafluorophenyl)porphyrin (TPFPP) chromium complexes, as well as some other tetradentate macrocyclic ligands. Electrospray ionization in concert with Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry has been used to characterize and observe reactivity of the ionic species [(TPFPP)Cr(III)](+) (1) and [(TPFPP)Cr(V)O](+) (2). These are attractive systems to examine the effects of spin-state change on oxygen-atom transfer because the d(1) Cr(V) species are doublets, while the Cr(III) complexes have quartet ground states with high-lying doublet excited states. In the gas phase, [(TPFPP)Cr(III)](+) forms adducts with a variety of neutral donors, but O-atom transfer is only observed for NO(2). Pyridine N-oxide adducts of 1 do yield 2 upon collision-induced dissociation (CID), but the ethylene oxide, DMSO, and TEMPO analogues do not. [(TPFPP)Cr(V)O](+) is shown by its reactivity and by CID experiments to be a terminal metal-oxo with a single, vacant coordination site. It also displays limited reaction chemistry, being deoxygenated only by the very potent reductant P(OMe)(3). In general, [(TPFPP)Cr(V)O](+) species are much less reactive than the Fe and Mn analogues. Thermochemical analysis of the reactions points toward the involvement of spin issues in the lower observed reactivity of the chromium complexes.


Assuntos
Cromo/química , Metaloporfirinas/química , Oxigênio/química , Gases , Espectroscopia de Ressonância Magnética , Transição de Fase
9.
Phys Chem Chem Phys ; 12(41): 13455-67, 2010 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-20852770

RESUMO

S-Nitrosocaptopril, a biologically active S-nitrosothiol, is generated as protonated species and isolated in the gas phase by electrospray ionization coupled to Fourier Transform Ion Cyclotron Resonance (FT-ICR) or ion-trap mass spectrometry. The structural and IR spectroscopic characterization of protonated S-nitrosocaptopril (SNOcapH(+)) is aided by the comparative study of the parent species lacking the NO feature, namely protonated captopril. The study is accomplished by methodologies based on tandem mass spectrometry, namely by energy resolved collision-induced dissociation and infrared multiple-photon dissociation (IRMPD) spectroscopy, backed by density functional theory calculations. IRMPD spectra have been obtained both in the 1000-1900 cm(-1) fingerprint range, using a beamline of the infrared free electron laser (IR-FEL) at the Centre Laser Infrarouge d'Orsay (CLIO), and in the O-H and N-H stretching region (2900-3700 cm(-1)) using the tunable IR radiation of a tabletop parametric oscillator/amplifier (OPO/OPA) laser source. The structural features of the ion have been ascertained by comparison of the experimental IRMPD spectra with the IR transitions calculated for the lowest energy isomers. Evidence is obtained that protonation occurs at the amide carbonyl oxygen which is found to be the thermodynamically most basic site. However, SNOcapH(+) is present as a thermally equilibrated mixture of low-energy structures, with a major contribution of the most stable isomer characterized by a trans relationship of the positively charged OH group with respect to the carboxylic acid functionality on the adjacent proline ring and by an anti conformation at the S-N (partial) double bond, though the energy difference with the analogous trans-syn isomer is less than 1 kJ mol(-1). The highly diagnostic N-O stretching mode has been unambiguously identified, which may be regarded as an informative probe for S-nitrosation features in more complex, biologically active molecules.


Assuntos
Aminoácidos/química , Captopril/análogos & derivados , Amidas/química , Captopril/química , Isomerismo , Prótons , Espectrofotometria Infravermelho , Termodinâmica
10.
Eur J Mass Spectrom (Chichester) ; 16(3): 407-14, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20530825

RESUMO

Functional models of the Compound I intermediate of monooxygenase heme enzymes, namely [(TPFPP)(*+)Fe(IV)=O](+) and [(TPFPP)Mn(V)=O](+) (TPFPP = meso-tetrakis (pentafluorophenyl)porphyrinato dianion), are obtained as bare species by electrospray ionization from solutions of appropriate precursors and their reactivity is investigated in the gas-phase. By an alternative approach involving the reaction of a gaseous oxidant, the naked core of Compound I, [(PP-IX)(*+)Fe(IV)=O](+) (PP-IX = protoporphyrin IX dianion) has been produced as well. This achievement, unprecedented in studies run in solution, is now made possible working in the gas-phase. The long lifetime ensured by the dilute gas-phase allows to reveal both structural details and elementary steps of the catalytic activity of these high-valent oxo-metal intermediates. Depending on the features of the oxo-metal complex, ionic products are formed with neutral substrates involving: (i) addition, (ii) oxygen atom transfer, (iii) formal hydride transfer. In contrast, ionic products indicative of a net initial hydrogen atom transfer event are never observed. The reaction pathways of these ultimate catalytic intermediates void of any trans axial ligand, counterion, solvent or protein environment are thus elucidated.


Assuntos
Complexos de Coordenação/química , Ciclotrons , Oxigenases/metabolismo , Porfirinas/química , Complexos de Coordenação/metabolismo , Análise de Fourier , Gases , Ligação de Hidrogênio , Cinética , Ligantes , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Fosfinas/química , Porfirinas/metabolismo
11.
Chemistry ; 15(33): 8185-95, 2009 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-19603434

RESUMO

Anion-pi interactions between a pi-acidic aromatic system and an anion are gaining increasing recognition in chemistry and biology. Herein, the binding features of an electron-deficient aromatic system (1,3,5-trinitrobenzene (TNB)) and selected anions (OH-, Br-, and I-) are examined in the gas phase by using the combined information derived from collision-induced dissociation experiments at variable energy, infrared multiple-photon dissociation spectroscopy, and quantum chemical calculations. We provide spectroscopic evidence for two different structural motifs of anion-arene complexes depending on the nature of the anion. The TNB-OR- complexes (R=H, or alkyl groups which were studied earlier) adopt an anionic sigma-complex structure whereby RO- attacks the aromatic ring with covalent bond formation, and develops a tetrahedral ring carbon bound to H and OR. The halide complexes rather conform to a structure in which the TNB moiety is hardly altered, and the halogen is placed on an unsubstituted carbon atom over the periphery of the ring at a C-X distance that is appreciably longer than a typical covalent bond length. The ensuing structural motif, previously characterized in the solid state and named weak sigma interaction, is now confirmed by an IR spectroscopic assay in the gas phase, in which the sampled species are unperturbed by crystal packing or solvation effects.


Assuntos
Ânions/química , Trinitrobenzenos/química , Elétrons , Modelos Moleculares , Espectrofotometria Infravermelho
12.
Chemphyschem ; 10(3): 520-2, 2009 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19173268

RESUMO

An anti trihydroxycarbenium ion is revealed to be the gas-phase structure of protonated carbonic acid by IR multiple-photon dissociation spectroscopy (see picture for calculated structure and comparison of experimental and computed spectra). Deprotonation yields anti-H(2)CO(3) with a nominal gas-phase basicity of 724 kJ mol(-1).

13.
J Am Chem Soc ; 130(10): 3208-17, 2008 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-18278912

RESUMO

The mechanisms of oxidative N-dealkylation of amines by heme enzymes including peroxidases and cytochromes P450 and by functional models for the active Compound I species have long been studied. A debated issue has concerned in particular the character of the primary step initiating the oxidation sequence, either a hydrogen atom transfer (HAT) or an electron transfer (ET) event, facing problems such as the possible contribution of multiple oxidants and complex environmental effects. In the present study, an oxo iron(IV) porphyrin radical cation intermediate 1, [(TPFPP)*+ Fe(IV)=O]+ (TPFPP = meso-tetrakis (pentafluorophenyl)porphinato dianion), functional model of Compound I, has been produced as a bare species. The gas-phase reaction with amines (A) studied by ESI-FT-ICR mass spectrometry has revealed for the first time the elementary steps and the ionic intermediates involved in the oxidative activation. Ionic products are formed involving ET (A*+, the amine radical cation), formal hydride transfer (HT) from the amine ([A(-H)]+, an iminium ion), and oxygen atom transfer (OAT) to the amine (A(O), likely a carbinolamine product), whereas an ionic product involving a net initial HAT event is never observed. The reaction appears to be initiated by an ET event for the majority of the tested amines which included tertiary aliphatic and aromatic amines as well as a cyclic and a secondary amine. For a series of N,N-dimethylanilines the reaction efficiency for the ET activated pathways was found to correlate with the ionization energy of the amine. A stepwise pathway accounts for the C-H bond activation resulting in the formal HT product, namely a primary ET process forming A*+, which is deprotonated at the alpha-C-H bond forming an N-methyl-N-arylaminomethyl radical, A(-H)*, readily oxidized to the iminium ion, [A(-H)]+. The kinetic isotope effect (KIE) for proton transfer (PT) increases as the acidity of the amine radical cation increases and the PT reaction to the base, the ferryl group of (TPFPP)Fe(IV)=O, approaches thermoneutrality. The ET reaction displayed by 1 with gaseous N,N-dimethylaniline finds a counterpart in the ET reactivity of FeO+, reportedly a potent oxidant in the gas phase, and with the barrierless ET process for a model (P)*+ Fe(IV)=O species (where P is the porphine dianion) as found by theoretical calculations. Finally, the remarkable OAT reactivity of 1 with C6F5N(CH3)2 may hint to a mechanism along a route of diverse spin multiplicity.


Assuntos
Aminas/química , Ferro/química , Metaloporfirinas/química , Alquilação , Aminas/síntese química , Cátions/química , Simulação por Computador , Sistema Enzimático do Citocromo P-450/química , Análise de Fourier , Radicais Livres/química , Cinética , Espectrometria de Massas/métodos , Modelos Químicos , Oxirredução , Peroxidases/química , Fatores de Tempo
14.
Open Biol ; 6(7)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27466442

RESUMO

The NF-κB signalling module controls transcription through a network of protein kinases such as the IKKs, as well as inhibitory proteins (IκBs) and transcription factors including RelA/p65. Phosphorylation of the NF-κB subunits is critical for dictating system dynamics. Using both non-targeted discovery and quantitative selected reaction monitoring-targeted proteomics, we show that the cytokine TNFα induces dynamic multisite phosphorylation of RelA at a number of previously unidentified residues. Putative roles for many of these phosphorylation sites on RelA were predicted by modelling of various crystal structures. Stoichiometry of phosphorylation determination of Ser45 and Ser42 revealed preferential early phosphorylation of Ser45 in response to TNFα. Quantitative analyses subsequently confirmed differential roles for pSer42 and pSer45 in promoter-specific DNA binding and a role for both of these phosphosites in regulating transcription from the IL-6 promoter. These temporal dynamics suggest that RelA-mediated transcription is likely to be controlled by functionally distinct NF-κB proteoforms carrying different combinations of modifications, rather than a simple 'one modification, one effect' system.


Assuntos
DNA/metabolismo , Interleucina-6/genética , Serina/metabolismo , Fator de Transcrição RelA/química , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Cristalografia por Raios X , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Proteômica/métodos , Fator de Transcrição RelA/genética , Transcrição Gênica
16.
Nat Chem ; 6(4): 281-94, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24651194

RESUMO

Mass spectrometry is a vital tool for molecular characterization, and the allied technique of ion mobility is enhancing many areas of (bio)chemical analysis. Strong synergy arises between these two techniques because of their ability to ascertain complementary information about gas-phase ions. Ion mobility separates ions (from small molecules up to megadalton protein complexes) based on their differential mobility through a buffer gas. Ion mobility-mass spectrometry (IM-MS) can thus act as a tool to separate complex mixtures, to resolve ions that may be indistinguishable by mass spectrometry alone, or to determine structural information (for example rotationally averaged cross-sectional area), complementary to more traditional structural approaches. Finally, IM-MS can be used to gain insights into the conformational dynamics of a system, offering a unique means of characterizing flexibility and folding mechanisms. This Review critically describes how IM-MS has been used to enhance various areas of chemical and biophysical analysis.


Assuntos
Espectrometria de Massas/métodos , Biofísica , Íons , Conformação Molecular
17.
J Am Soc Mass Spectrom ; 25(2): 214-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24297471

RESUMO

A one-step enzymatic reaction for improving the collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) analysis of phosphorylated peptides in an ion trap is presented. Carboxypeptidase-B (CBP-B) was used to selectively remove C-terminal arginine or lysine residues from phosphorylated tryptic/Lys-C peptides prior to their MS/MS analysis by CID with a Paul-type ion trap. Removal of this basic C-terminal residue served to limit the extent of gas-phase neutral loss of phosphoric acid (H3PO4), favoring the formation of diagnostic b and y ions as determined by an increase in both the number and relative intensities of the sequence-specific product ions. Such differential fragmentation is particularly valuable when the H3PO4 elimination is so predominant that localizing the phosphorylation site on the peptide sequence is hindered. Improvement in the quality of tandem mass spectral data generated by CID upon CBP-B treatment resulted in greater confidence both in assignment of the phosphopeptide primary sequence and for pinpointing the site of phosphorylation. Higher Mascot ion scores were also generated, combined with lower expectation values and higher delta scores for improved confidence in site assignment; Ascore values also improved. These results are rationalized in accordance with the accepted mechanisms for the elimination of H3PO4 upon low energy CID and insights into the factors dictating the observed dissociation pathways are presented. We anticipate this approach will be of utility in the MS analysis of phosphorylated peptides, especially when alternative electron-driven fragmentation techniques are not available.


Assuntos
Fosfopeptídeos/análise , Fosfopeptídeos/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Carboxipeptidases/metabolismo , Íons/análise , Íons/química , Íons/metabolismo , Dados de Sequência Molecular , Fosfopeptídeos/metabolismo , Ácidos Fosfóricos , Fosforilação , Prótons
18.
Chem Commun (Camb) ; 50(29): 3845-8, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24589658

RESUMO

InfraRed Multiple Photon Dissociation (IRMPD) spectroscopy was used to assay the structural features of the fragment ions resulting from the elimination of H3PO4 in the Collision-Induced Dissociation (CID) of protonated serine. The results are interpreted with the aid of density functional theory calculations. Experiment and theory point to an aziridine-ring structure, implying participation of the vicinal amino group in the formation of this species. This finding constitutes a benchmark for investigating the same process in the CID of phosphorylated peptides.


Assuntos
Ácidos Fosfóricos/química , Serina/química , Espectrofotometria Infravermelho , Aziridinas/química , Isomerismo , Cinética , Fosforilação , Prótons , Termodinâmica
19.
Mol Cell Biol ; 34(22): 4088-103, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25182533

RESUMO

Eukaryotic elongation factor 2 kinase (eEF2K), an atypical calmodulin-dependent protein kinase, phosphorylates and inhibits eEF2, slowing down translation elongation. eEF2K contains an N-terminal catalytic domain, a C-terminal α-helical region and a linker containing several regulatory phosphorylation sites. eEF2K is expressed at high levels in certain cancers, where it may act to help cell survival, e.g., during nutrient starvation. However, it is a negative regulator of protein synthesis and thus cell growth, suggesting that cancer cells may possess mechanisms to inhibit eEF2K under good growth conditions, to allow protein synthesis to proceed. We show here that the mTORC1 pathway and the oncogenic Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway cooperate to restrict eEF2K activity. We identify multiple sites in eEF2K whose phosphorylation is regulated by mTORC1 and/or ERK, including new ones in the linker region. We demonstrate that certain sites are phosphorylated directly by mTOR or ERK. Our data reveal that glycogen synthase kinase 3 signaling also regulates eEF2 phosphorylation. In addition, we show that phosphorylation sites remote from the N-terminal calmodulin-binding motif regulate the phosphorylation of N-terminal sites that control CaM binding. Mutations in the former sites, which occur in cancer cells, cause the activation of eEF2K. eEF2K is thus regulated by a network of oncogenic signaling pathways.


Assuntos
Quinase do Fator 2 de Elongação/metabolismo , Complexos Multiproteicos/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Quinase do Fator 2 de Elongação/genética , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Neoplasias/genética , Fosforilação , Mutação Puntual , Ratos , Quinases raf/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA