Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 614(7947): 249-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755173

RESUMO

The exciton, a bound state of an electron and a hole, is a fundamental quasiparticle induced by coherent light-matter interactions in semiconductors. When the electrons and holes are in distinct spatial locations, spatially indirect excitons are formed with a much longer lifetime and a higher condensation temperature. One of the ultimate frontiers in this field is to create long-lived excitonic topological quasiparticles by driving exciton states with topological properties, to simultaneously leverage both topological effects and correlation1,2. Here we reveal the existence of a transient excitonic topological surface state (TSS) in a topological insulator, Bi2Te3. By using time-, spin- and angle-resolved photoemission spectroscopy, we directly follow the formation of a long-lived exciton state as revealed by an intensity buildup below the bulk-TSS mixing point and an anomalous band renormalization of the continuously connected TSS in the momentum space. Such a state inherits the spin-polarization of the TSS and is spatially indirect along the z axis, as it couples photoinduced surface electrons and bulk holes in the same momentum range, which ultimately leads to an excitonic state of the TSS. These results establish Bi2Te3 as a possible candidate for the excitonic condensation of TSSs3 and, in general, opens up a new paradigm for exploring the momentum space emergence of other spatially indirect excitons, such as moiré and quantum well excitons4-6, and for the study of non-equilibrium many-body topological physics.

2.
Nat Mater ; 22(2): 200-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646794

RESUMO

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous Bi2Se3 thin films host a number of two-dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data are consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin-resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture, confirming the existence of spin-momentum locked surface states. We discuss these experimental results in light of theoretical photoemission spectra obtained with an amorphous topological insulator tight-binding model, contrasting it with alternative explanations. The discovery of spin-momentum locked surface states in amorphous materials opens a new avenue to characterize amorphous matter, and triggers the search for an overlooked subset of quantum materials outside of current classification schemes.

3.
Nano Lett ; 23(15): 6799-6806, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486984

RESUMO

Near the magic angle, strong correlations drive many intriguing phases in twisted bilayer graphene (tBG) including unconventional superconductivity and chern insulation. Whether correlations can tune symmetry breaking phases in tBG at intermediate (≳ 2°) twist angles remains an open fundamental question. Here, using ARPES, we study the effects of many-body interactions and displacement field on the band structure of tBG devices at an intermediate (3°) twist angle. We observe a layer- and doping-dependent renormalization of bands at the K points that is qualitatively consistent with moiré models of the Hartree-Fock interaction. We provide evidence of correlation-enhanced inversion symmetry-breaking, manifested by gaps at the Dirac points that are tunable with doping. These results suggest that electronic interactions play a significant role in the physics of tBG even at intermediate twist angles and present a new pathway toward engineering band structure and symmetry-breaking phases in moiré heterostructures.

4.
Phys Rev Lett ; 131(2): 026701, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505968

RESUMO

In kagome metal CsV_{3}Sb_{5}, multiple intertwined orders are accompanied by both electronic and structural instabilities. These exotic orders have attracted much recent attention, but their origins remain elusive. The newly discovered CsTi_{3}Bi_{5} is a Ti-based kagome metal to parallel CsV_{3}Sb_{5}. Here, we report angle-resolved photoemission experiments and first-principles calculations on pristine and Cs-doped CsTi_{3}Bi_{5} samples. Our results reveal that the van Hove singularity (vHS) in CsTi_{3}Bi_{5} can be tuned in a large energy range without structural instability, different from that in CsV_{3}Sb_{5}. As such, CsTi_{3}Bi_{5} provides a complementary platform to disentangle and investigate the electronic instability with a tunable vHS in kagome metals.

5.
Nano Lett ; 18(6): 3661-3666, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29761696

RESUMO

The interaction between a magnetic impurity, such as cerium (Ce) atom, and surrounding electrons has been one of the core problems in understanding many-body interaction in solid and its relation to magnetism. Kondo effect, the formation of a new resonant ground state with quenched magnetic moment, provides a general framework to describe many-body interaction in the presence of magnetic impurity. In this Letter, a combined study of angle-resolved photoemission (ARPES) and dynamic mean-field theory (DMFT) on Ce-intercalated graphene shows that Ce-induced localized states near Fermi energy, EF, hybridized with the graphene π-band, exhibit gradual increase in spectral weight upon decreasing temperature. The observed temperature dependence follows the expectations from the Kondo picture in the weak coupling limit. Our results provide a novel insight how Kondo physics emerges in the sea of two-dimensional Dirac electrons.

6.
Nano Lett ; 17(10): 5914-5918, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28906124

RESUMO

The electron band structure of graphene on SrTiO3 substrate has been investigated as a function of temperature. The high-resolution angle-resolved photoemission study reveals that the spectral width at Fermi energy and the Fermi velocity of graphene on SrTiO3 are comparable to those of graphene on a BN substrate. Near the charge neutrality, the energy-momentum dispersion of graphene exhibits a strong deviation from the well-known linearity, which is magnified as temperature decreases. Such modification resembles the characteristics of enhanced electron-electron interaction. Our results not only suggest that SrTiO3 can be a plausible candidate as a substrate material for applications in graphene-based electronics but also provide a possible route toward the realization of a new type of strongly correlated electron phases in the prototypical two-dimensional system via the manipulation of temperature and a proper choice of dielectric substrates.

7.
Nat Mater ; 15(2): 154-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657327

RESUMO

Recent progress in the field of topological states of matter has largely been initiated by the discovery of bismuth and antimony chalcogenide bulk topological insulators (TIs; refs ,,,), followed by closely related ternary compounds and predictions of several weak TIs (refs ,,). However, both the conceptual richness of Z2 classification of TIs as well as their structural and compositional diversity are far from being fully exploited. Here, a new Z2 topological insulator is theoretically predicted and experimentally confirmed in the ß-phase of quasi-one-dimensional bismuth iodide Bi4I4. The electronic structure of ß-Bi4I4, characterized by Z2 invariants (1;110), is in proximity of both the weak TI phase (0;001) and the trivial insulator phase (0;000). Our angle-resolved photoemission spectroscopy measurements performed on the (001) surface reveal a highly anisotropic band-crossing feature located at the  point of the surface Brillouin zone and showing no dispersion with the photon energy, thus being fully consistent with the theoretical prediction.

8.
Phys Rev Lett ; 118(9): 097001, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306293

RESUMO

One of the most puzzling features of high-temperature cuprate superconductors is the pseudogap state, which appears above the temperature at which superconductivity is destroyed. There remain fundamental questions regarding its nature and its relation to superconductivity. But to address these questions, we must first determine whether the pseudogap and superconducting states share a common property: particle-hole symmetry. We introduce a new technique to test particle-hole symmetry by using laser pulses to manipulate and measure the chemical potential on picosecond time scales. The results strongly suggest that the asymmetry in the density of states is inverted in the pseudogap state, implying a particle-hole asymmetric gap. Independent of interpretation, these results can test theoretical predictions of the density of states in cuprates.

9.
Proc Natl Acad Sci U S A ; 108(28): 11365-9, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709258

RESUMO

The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we present such a study in quasi-freestanding graphene by using high-resolution angle-resolved photoemission spectroscopy. We see the electron-electron and electron-phonon interactions go through substantial changes when the semimetallic regime is approached, including renormalizations due to strong electron-electron interactions with similarities to marginal Fermi liquid behavior. These findings set a new benchmark in our understanding of many-body physics in graphene and a variety of novel materials with Dirac fermions.

10.
Sci Adv ; 10(19): eadl4481, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728393

RESUMO

Screening, a ubiquitous phenomenon associated with the shielding of electric fields by surrounding charges, has been widely adopted as a means to modify a material's properties. While most studies have relied on static changes of screening through doping or gating thus far, here we demonstrate that screening can also drive the onset of distinct quantum states on the ultrafast timescale. By using time- and angle-resolved photoemission spectroscopy, we show that intense optical excitation can drive 1T-TiSe2, a prototypical charge density wave material, almost instantly from a gapped into a semimetallic state. By systematically comparing changes in band structure over time and excitation strength with theoretical calculations, we find that the appearance of this state is likely caused by a dramatic reduction of the screening length. In summary, this work showcases how optical excitation enables the screening-driven design of a nonequilibrium semimetallic phase in TiSe2, possibly providing a general pathway into highly screened phases in other strongly correlated materials.

11.
Phys Rev Lett ; 110(14): 146802, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167021

RESUMO

The effect of charge-carrier screening on the transport properties of a neutral graphene sheet is studied by directly probing its electronic structure. We find that the Fermi velocity, Dirac point velocity, and overall distortion of the Dirac cone are renormalized due to the screening of the electron-electron interaction in an unusual way. We also observe an increase of the electron mean free path due to the screening of charged impurities. These observations help us to understand the basis for the transport properties of graphene, as well as the fundamental physics of these interesting electron-electron interactions at the Dirac point crossing.

12.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454435

RESUMO

A flat band structure in momentum space is considered key for the realization of novel phenomena. A topological flat band, also known as a drumhead state, is an ideal platform to drive new exotic topological quantum phases. Using angle-resolved photoemission spectroscopy experiments, we reveal the emergence of a highly localized surface state in a topological semimetal BaAl4 and provide its full energy and momentum space topology. We find that the observed surface state is localized in momentum, inside a square-shaped bulk Dirac nodal loop, and in energy, leading to a flat band and a peak in the density of state. These results imply this class of materials as an experimental realization of drumhead surface states and provide an important reference for future studies of the fundamental physics of correlated quantum effects in topological materials.

13.
Sci Rep ; 12(1): 15860, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151110

RESUMO

The formation of a charge density wave state is characterized by an order parameter. The way it is established provides unique information on both the role that correlation plays in driving the charge density wave formation and the mechanism behind its formation. Here we use time and angle resolved photoelectron spectroscopy to optically perturb the charge-density phase in 1T-TiSe[Formula: see text] and follow the recovery of its order parameter as a function of energy, momentum and excitation density. Our results reveal that two distinct orders contribute to the gap formation, a CDW order and pseudogap-like order, manifested by an overall robustness to optical excitation. A detailed analysis of the magnitude of the the gap as a function of excitation density and delay time reveals the excitonic long-range nature of the CDW gap and the short-range Jahn-Teller character of the pseudogap order. In contrast to the gap, the intensity of the folded Se[Formula: see text]* band can only give access to the excitonic order. These results provide new information into the the long standing debate on the origin of the gap in TiSe[Formula: see text] and place it in the same context of other quantum materials where a pseudogap phase appears to be a precursor of long-range order.

14.
Science ; 375(6576): 76-81, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855511

RESUMO

The study of quantum phase transitions that are not clearly associated with broken symmetry is a major effort in condensed matter physics, particularly in regard to the problem of high-temperature superconductivity, for which such transitions are thought to underlie the mechanism of superconductivity itself. Here we argue that the putative quantum critical point in the prototypical unconventional superconductor CeCoIn5 is characterized by the delocalization of electrons in a transition that connects two Fermi surfaces of different volumes, with no apparent broken symmetry. Drawing on established theory of f-electron metals, we discuss an interpretation for such a transition that involves the fractionalization of spin and charge, a model that effectively describes the anomalous transport behavior we measured for the Hall effect.

15.
Sci Adv ; 7(37): eabf4387, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516763

RESUMO

The search for materials with flat electronic bands continues due to their potential to drive strong correlation and symmetry breaking orders. Electronic moirés formed in van der Waals heterostructures have proved to be an ideal platform. However, there is no holistic experimental picture for how superlattices modify electronic structure. By combining spatially resolved angle-resolved photoemission spectroscopy with optical spectroscopy, we report the first direct evidence of how strongly correlated phases evolve from a weakly interacting regime in a transition metal dichalcogenide superlattice. By comparing short and long wave vector moirés, we find that the electronic structure evolves into a highly localized regime with increasingly flat bands and renormalized effective mass. The flattening is accompanied by the opening of a large gap in the spectral function and splitting of the exciton peaks. These results advance our understanding of emerging phases in moiré superlattices and point to the importance of interlayer physics.

16.
Nat Commun ; 10(1): 5534, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797932

RESUMO

The emergence of saddle-point Van Hove singularities (VHSs) in the density of states, accompanied by a change in Fermi surface topology, Lifshitz transition, constitutes an ideal ground for the emergence of different electronic phenomena, such as superconductivity, pseudo-gap, magnetism, and density waves. However, in most materials the Fermi level, [Formula: see text], is too far from the VHS where the change of electronic topology takes place, making it difficult to reach with standard chemical doping or gating techniques. Here, we demonstrate that this scenario can be realized at the interface between a Mott insulator and a band insulator as a result of quantum confinement and correlation enhancement, and easily tuned by fine control of layer thickness and orbital occupancy. These results provide a tunable pathway for Fermi surface topology and VHS engineering of electronic phases.

17.
ACS Nano ; 13(11): 12710-12718, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31638764

RESUMO

Recent direct experimental observation of multiple highly dispersive C60 valence bands has allowed for a detailed analysis of the unusual photoemission traits of these features through photon energy- and polarization-dependent measurements. Previously obscured dispersions and strong photoemission traits are now revealed by specific light polarizations. The observed intensity effects prove the locking in place of the C60 molecules at low temperatures and the existence of an orientational order imposed by the substrate chosen. Most importantly, photon energy- and polarization-dependent effects are shown to be intimately linked with the orbital character of the C60 band manifolds which allow for a more precise determination of the orbital character within the third highest occupied molecular orbital (HOMO-2). Our observations and analysis provide important considerations for the connection between molecular and crystalline C60 electronic structure, past and future band structure studies, and for increasingly popular C60 electronic device applications, especially those making use of heterostructures.

18.
Rev Sci Instrum ; 90(2): 023105, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831755

RESUMO

Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and ultra-high vacuum endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2 × 1010 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe2, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe2. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit.

19.
Science ; 362(6420): 1271-1275, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545882

RESUMO

Cuprate superconductors have long been thought of as having strong electronic correlations but negligible spin-orbit coupling. Using spin- and angle-resolved photoemission spectroscopy, we discovered that one of the most studied cuprate superconductors, Bi2212, has a nontrivial spin texture with a spin-momentum locking that circles the Brillouin zone center and a spin-layer locking that allows states of opposite spin to be localized in different parts of the unit cell. Our findings pose challenges for the vast majority of models of cuprates, such as the Hubbard model and its variants, where spin-orbit interaction has been mostly neglected, and open the intriguing question of how the high-temperature superconducting state emerges in the presence of this nontrivial spin texture.

20.
J Phys Chem B ; 111(48): 13491-8, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-17997540

RESUMO

The electronic structure of individual sheets of the bacterial surface protein layer (S layer) of Bacillus sphaericus NCTC 9602 was studied using a photoemission electron microscope (PEEM) operating in near-edge X-ray absorption fine structure spectroscopy mode. The laterally resolved measurements performed at the C 1s, N 1s, and O 1s thresholds on fresh samples revealed characteristic differences compared to the laterally integrated data, where substrate contributions were taken along with the protein signals. During the PEEM experiments an irradiation-induced increase of the C-C bond density at the cost of the densities of the C-O and C-N bonds related to a rearrangement of the contributing atoms of the S layer deposited onto a Si substrate was observed. The critical irradiation doses for the C-O and C-N bond breaking and formation of the new C-C bonds were derived.


Assuntos
Proteínas de Bactérias/análise , Microscopia Eletrônica/métodos , Proteínas de Bactérias/efeitos da radiação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA