Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biol Chem ; 286(52): 44620-31, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-21937448

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD), a dominant hereditary disease with a prevalence of 7 per 100,000 individuals, is associated with a partial deletion in the subtelomeric D4Z4 repeat array on chromosome 4q. The D4Z4 repeat contains a strong transcriptional enhancer that activates promoters of several FSHD-related genes. We report here that the enhancer within the D4Z4 repeat binds the Krüppel-like factor KLF15. KLF15 was found to be up-regulated during myogenic differentiation induced by serum starvation or by overexpression of the myogenic differentiation factor MYOD. When overexpressed, KLF15 activated the D4Z4 enhancer and led to overexpression of DUX4c (Double homeobox 4, centromeric) and FRG2 (FSHD region gene 2) genes, whereas its silencing caused inactivation of the D4Z4 enhancer. In immortalized human myoblasts, the D4Z4 enhancer was activated by the myogenic factor MYOD, an effect that was abolished upon KLF15 silencing or when the KLF15-binding sites within the D4Z4 enhancer were mutated, indicating that the myogenesis-related activation of the D4Z4 enhancer was mediated by KLF15. KLF15 and several myogenesis-related factors were found to be expressed at higher levels in myoblasts, myotubes, and muscle biopsies from FSHD patients than in healthy controls. We propose that KLF15 serves as a molecular link between myogenic factors and the activity of the D4Z4 enhancer, and it thus contributes to the overexpression of the DUX4c and FRG2 genes during normal myogenic differentiation and in FSHD.


Assuntos
Cromossomos Humanos Par 4/metabolismo , Elementos Facilitadores Genéticos , Fatores de Transcrição Kruppel-Like/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas Nucleares/metabolismo , Animais , Cromossomos Humanos Par 4/genética , Cricetinae , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Desenvolvimento Muscular/genética , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Genome Res ; 18(1): 39-45, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18032730

RESUMO

Facio-scapulo-humeral dystrophy (FSHD), a muscular hereditary disease with a prevalence of 1 in 20,000, is caused by a partial deletion of a subtelomeric repeat array on chromosome 4q. Earlier, we demonstrated the existence in the vicinity of the D4Z4 repeat of a nuclear matrix attachment site, FR-MAR, efficient in normal human myoblasts and nonmuscular human cells but much weaker in muscle cells from FSHD patients. We now report that the D4Z4 repeat contains an exceptionally strong transcriptional enhancer at its 5'-end. This enhancer up-regulates transcription from the promoter of the neighboring FRG1 gene. However, an enhancer blocking activity was found present in FR-MAR that in vitro could protect transcription from the enhancer activity of the D4Z4 array. In vivo, transcription from the FRG1 and FRG2 genes could be down- or up-regulated depending on whether or not FR-MAR is associated with the nuclear matrix. We propose a model for an etiological role of the delocalization of FR-MAR in the genesis of FSHD.


Assuntos
Cromossomos Humanos Par 4/genética , Elementos Facilitadores Genéticos/genética , Regiões de Interação com a Matriz/genética , Modelos Genéticos , Distrofia Muscular Facioescapuloumeral/genética , Locos de Características Quantitativas/genética , Transcrição Gênica/genética , Células HeLa , Humanos , Proteínas dos Microfilamentos , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos/metabolismo , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA , Regulação para Cima/genética
3.
PLoS One ; 3(10): e3389, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18852887

RESUMO

The number of D4Z4 repeats in the subtelomeric region of chromosome 4q is strongly reduced in patients with Facio-Scapulo-Humeral Dystrophy (FSHD). We performed chromosome conformation capture (3C) analysis to document the interactions taking place among different 4q35 markers. We found that the reduced number of D4Z4 repeats in FSHD myoblasts was associated with a global alteration of the three-dimensional structure of the 4q35 region. Indeed, differently from normal myoblasts, the 4qA/B marker interacted directly with the promoters of the FRG1 and ANT1 genes in FSHD cells. Along with the presence of a newly identified transcriptional enhancer within the 4qA allele, our demonstration of an interaction occurring between chromosomal segments located megabases away on the same chromosome 4q allows to revisit the possible mechanisms leading to FSHD.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Cromossomos Humanos Par 4/genética , Regulação da Expressão Gênica , Rearranjo Gênico , Distrofia Muscular Facioescapuloumeral/genética , Proteínas Nucleares/genética , Células Cultivadas , Fibroblastos , Humanos , Proteínas dos Microfilamentos , Regiões Promotoras Genéticas , Proteínas de Ligação a RNA , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição
4.
Proc Natl Acad Sci U S A ; 103(18): 6982-7, 2006 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-16632607

RESUMO

Fascioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant neuromuscular disorder linked to partial deletion of integral numbers of a 3.3 kb polymorphic repeat, D4Z4, within the subtelomeric region of chromosome 4q. Although the relationship between deletions of D4Z4 and FSHD is well established, how this triggers the disease remains unclear. We have mapped the DNA loop domain containing the D4Z4 repeat cluster in human primary myoblasts and in murine-human hybrids. A nuclear matrix attachment site was found located in the vicinity of the repeat. Prominent in normal human myoblasts and nonmuscular human cells, this site is much weaker in muscle cells derived from FSHD patients, suggesting that the D4Z4 repeat array and upstream genes reside in two loops in nonmuscular cells and normal human myoblasts but in only one loop in FSHD myoblasts. We propose a model whereby the nuclear scaffold/matrix attached region regulates chromatin accessibility and expression of genes implicated in the genesis of FSHD.


Assuntos
Cromatina/química , Cromossomos Humanos Par 4 , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/fisiologia , Conformação de Ácido Nucleico , Animais , Mapeamento Cromossômico , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Camundongos , Mioblastos/citologia , Matriz Nuclear/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Recombinação Genética
5.
Anal Bioanal Chem ; 381(7): 1476-9, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15821858

RESUMO

We describe a method for detecting proteins after transfer to PVDF membranes, based on the surface potential attributed to each protein. Proteins separated by classical two-dimensional polyacrylamide gel electrophoresis could be detected by scanning the membrane surface with a vibrating capacitor (also called a Kelvin probe) on the basis of differences between their surface potential and that of the membrane. Coupled to colloidal gold staining, the technique enables detection of proteins previously undetectable by classical staining methods. Plotting variations of the surface potential in two dimensions visualizes proteins which migrate close together. Finally, we demonstrate that the Kelvin probe detects proteins over a concentration range from micro to sub-nanogram with increased sensitivity at lower concentrations, and unlike other methods, appears to be similar for all proteins tested so far. The method described is fast, reliable, and it can be automated for high throughput.


Assuntos
Eletroquímica/métodos , Proteínas/química , Nanotecnologia/métodos
6.
Electrophoresis ; 23(7-8): 1197-202, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11981869

RESUMO

Proteins present in human follicular fluid (HFF) have been poorly characterized to date. The purpose of our study was to analyse the protein content and identify new proteins originating from fluid of mature human follicles. A total of six females from infertile couples referred for in vitro fertilization (IVF) were stimulated and 44 follicular fluid samples from mature follicles yielding an oocyte were collected 34-36 h after human chorionic gonadotropin administration. HFF samples were processed for high-resolution two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Comparative analysis of the 2-D gels revealed up to 600 spots, of which four were selected because of variations in their expression level. Using direct sequencing procedures (Edman degradation) or matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS), these four spots were identified as three new proteins: thioredoxin peroxydase 1 (TDPX1), transthyretin (TTR) and retinol-binding protein (RBP). The proteins identified here may emerge as potential candidates for specific functions during folliculogenesis and may prove useful as biomedical markers for follicle and/or oocyte maturation.


Assuntos
Líquido Folicular/química , Folículo Ovariano/química , Proteínas/química , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Feminino , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA