Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 99(6): 2006-15, 2010 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-20858447

RESUMO

Picosecond fluorescence kinetics of wild-type (WT) and mutant cells of Synechocystis sp. PCC 6803, were studied at the ensemble level with a streak-camera and at the cell level using fluorescence-lifetime-imaging microscopy (FLIM). The FLIM measurements are in good agreement with the ensemble measurements, but they (can) unveil variations between and within cells. The BE mutant cells, devoid of photosystem II (PSII) and of the light-harvesting phycobilisomes, allowed the study of photosystem I (PSI) in vivo for the first time, and the observed 6-ps equilibration process and 25-ps trapping process are the same as found previously for isolated PSI. No major differences are detected between different cells. The PAL mutant cells, devoid of phycobilisomes, show four lifetimes: ∼20 ps (PSI and PSII), ∼80 ps, ∼440 ps, and 2.8 ns (all due to PSII), but not all cells are identical and variations in the kinetics are traced back to differences in the PSI/PSII ratio. Finally, FLIM measurements on WT cells reveal that in some cells or parts of cells, phycobilisomes are disconnected from PSI/PSII. It is argued that the FLIM setup used can become instrumental in unraveling photosynthetic regulation mechanisms in the future.


Assuntos
Microscopia de Fluorescência/métodos , Fotossíntese , Synechocystis/citologia , Synechocystis/metabolismo , Cinética , Mutação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Ficobilissomas/metabolismo , Synechocystis/enzimologia , Synechocystis/genética , Fatores de Tempo
2.
Eur Biophys J ; 39(2): 241-53, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19693494

RESUMO

Förster resonance energy transfer (FRET) is a powerful method for obtaining information about small-scale lengths between biomacromolecules. Visible fluorescent proteins (VFPs) are widely used as spectrally different FRET pairs, where one VFP acts as a donor and another VFP as an acceptor. The VFPs are usually fused to the proteins of interest, and this fusion product is genetically encoded in cells. FRET between VFPs can be determined by analysis of either the fluorescence decay properties of the donor molecule or the rise time of acceptor fluorescence. Time-resolved fluorescence spectroscopy is the technique of choice to perform these measurements. FRET can be measured not only in solution, but also in living cells by the technique of fluorescence lifetime imaging microscopy (FLIM), where fluorescence lifetimes are determined with the spatial resolution of an optical microscope. Here we focus attention on time-resolved fluorescence spectroscopy of purified, selected VFPs (both single VFPs and FRET pairs of VFPs) in cuvette-type experiments. For quantitative interpretation of FRET-FLIM experiments in cellular systems, details of the molecular fluorescence are needed that can be obtained from experiments with isolated VFPs. For analysis of the time-resolved fluorescence experiments of VFPs, we have utilised the maximum entropy method procedure to obtain a distribution of fluorescence lifetimes. Distributed lifetime patterns turn out to have diagnostic value, for instance, in observing populations of VFP pairs that are FRET-inactive.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/química , Espectrometria de Fluorescência/métodos , Algoritmos , Bactérias , Proteínas de Bactérias/química , Cálcio/química , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas Luminescentes/genética , Microscopia de Fluorescência/métodos , Fatores de Tempo
3.
Biophys J ; 95(11): 5399-411, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18790855

RESUMO

Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand binding.


Assuntos
Proteínas de Ligação ao Cálcio/química , Transferência Ressonante de Energia de Fluorescência/métodos , Cálcio/metabolismo , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Polarização de Fluorescência , Fotodegradação , Conformação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Fatores de Tempo
4.
Chem Sci ; 7(9): 5747-5752, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066538

RESUMO

The photophysics of the chromophore of the green fluorescent protein in Aequorea victoria (avGFP) are dominated by an excited state proton transfer reaction. In contrast the photophysics of the same chromophore in solution are dominated by radiationless decay, and photoacid behaviour is not observed. Here we show that modification of the pKa of the chromophore by fluorination leads to an excited state proton transfer on an extremely fast (50 fs) time scale. Such a fast rate suggests a barrierless proton transfer and the existence of a pre-formed acceptor site in the aqueous solution, which is supported by solvent and deuterium isotope effects. In addition, at lower pH, photochemical formation of the elusive zwitterion of the GFP chromophore is observed by means of an equally fast excited state proton transfer from the cation. The significance of these results for understanding and modifying the properties of fluorescent proteins are discussed.

5.
J Phys Chem B ; 116(9): 3013-20, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22320307

RESUMO

Yellow Cameleon 3.60 (YC3.60) is a calcium sensor based on Förster resonance energy transfer (FRET). This sensor is composed of a calmodulin domain and a M13 peptide, which are located in between enhanced cyan-fluorescent protein (ECFP) and the Venus variant of enhanced yellow-fluorescent protein (EYFP). Depending on the calcium concentration, the efficiency of FRET from donor ECFP to acceptor EYFP is changing. In this study, we have recorded time-resolved fluorescence spectra of ECFP, EYFP, and YC3.60 in aqueous solution with picosecond time resolution, using different excitation wavelengths. Detailed insight in the FRET kinetics was obtained by using global and target analyses of time- and wavelength-resolved fluorescence of purified YC3.60 in calcium-free and calcium-bound conformations. The results clearly demonstrate that for both conformations, there are two distinct donor populations: a major one giving rise to FRET and a minor one not able to perform FRET. The transfer time for the calcium-bound conformation is 21 ps, whereas it is in the order of 1 ns for the calcium-free conformation. Ratio imaging of acceptor and donor fluorescence intensities of YC3.60 is usually applied to measure Ca(2+) concentrations in living cells. From the obtained results, it is clear that the intensity ratio is strongly influenced by the presence of donor molecules that do not take part in FRET, thereby significantly affecting the quantitative interpretation of the results.


Assuntos
Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência
6.
Metabolomics ; 8(4): 714-718, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22833709

RESUMO

Mass peak alignment (ion-wise alignment) has recently become a popular method for unsupervised data analysis in untargeted metabolic profiling. Here we present MSClust-a software tool for analysis GC-MS and LC-MS datasets derived from untargeted profiling. MSClust performs data reduction using unsupervised clustering and extraction of putative metabolite mass spectra from ion-wise chromatographic alignment data. The algorithm is based on the subtractive fuzzy clustering method that allows unsupervised determination of a number of metabolites in a data set and can deal with uncertain memberships of mass peaks in overlapping mass spectra. This approach is based purely on the actual information present in the data and does not require any prior metabolite knowledge. MSClust can be applied for both GC-MS and LC-MS alignment data sets. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0368-2) contains supplementary material, which is available to authorized users.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA