Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(13): 5920-5924, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30867295

RESUMO

Cells must operate far from equilibrium, utilizing and dissipating energy continuously to maintain their organization and to avoid stasis and death. However, they must also avoid unnecessary waste of energy. Recent studies have revealed that molecular machines are extremely efficient thermodynamically compared with their macroscopic counterparts. However, the principles governing the efficient out-of-equilibrium operation of molecular machines remain a mystery. A theoretical framework has been recently formulated in which a generalized friction coefficient quantifies the energetic efficiency in nonequilibrium processes. Moreover, it posits that, to minimize energy dissipation, external control should drive the system along the reaction coordinate with a speed inversely proportional to the square root of that friction coefficient. Here, we demonstrate the utility of this theory for designing and understanding energetically efficient nonequilibrium processes through the unfolding and folding of single DNA hairpins.


Assuntos
Metabolismo Energético , Proteínas Motores Moleculares/metabolismo , DNA/metabolismo , Fricção , Modelos Teóricos , Conformação de Ácido Nucleico , Termodinâmica
2.
J Phys Chem Lett ; 13(51): 11844-11849, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36520417

RESUMO

F1-ATPase is a rotary molecular motor that in vivo is subject to strong nonequilibrium driving forces. There is great interest in understanding the operational principles governing its high efficiency of free-energy transduction. Here we use a near-equilibrium framework to design a nontrivial control protocol to minimize dissipation in rotating F1 to synthesize adenosine triphosphate. We find that the designed protocol requires much less work than a naive (constant-velocity) protocol across a wide range of protocol durations. Our analysis points to a possible mechanism for energetically efficient driving of F1 in vivo and provides insight into free-energy transduction for a broader class of biomolecular and synthetic machines.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/metabolismo , Proteínas Motores Moleculares/metabolismo
3.
Phys Rev E ; 103(2-1): 022140, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33735999

RESUMO

The excess work required to drive a stochastic system out of thermodynamic equilibrium through a time-dependent external perturbation is directly related to the amount of entropy produced during the driving process, allowing excess work and entropy production to be used interchangeably to quantify dissipation. Given the common intuition of biological molecular machines as internally communicating work between components, it is tempting to extend this correspondence to the driving of one component of an autonomous system by another; however, no such relation between the internal excess work and entropy production exists. Here we introduce the "transduced additional free-energy rate" between strongly coupled subsystems of an autonomous system, which is analogous to the excess power in systems driven by an external control parameter that receives no feedback from the system. We prove that this is a relevant measure of dissipation-in that it equals the steady-state entropy production rate due to the downstream subsystem-and demonstrate its advantages with a simple model system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA