Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurophotonics ; 11(1): 014415, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38545127

RESUMO

The Frontiers in Neurophotonics Symposium is a biennial event that brings together neurobiologists and physicists/engineers who share interest in the development of leading-edge photonics-based approaches to understand and manipulate the nervous system, from its individual molecular components to complex networks in the intact brain. In this Community paper, we highlight several topics that have been featured at the symposium that took place in October 2022 in Québec City, Canada.

3.
Neurophotonics ; 7(4): 040501, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33094123

RESUMO

Significance: Over the past decade, laser-based digital holographic microscopy (DHM), an important approach in the field of quantitative-phase imaging techniques, has become a significant label-free modality for live-cell imaging and used particularly in cellular neuroscience. However, coherent noise remains a major drawback for DHM, significantly limiting the possibility to visualize neuronal processes and precluding important studies on neuronal connectivity. Aim: The goal is to develop a DHM technique able to sharply visualize thin neuronal processes. Approach: By combining a wavelength-tunable light source with the advantages of hologram numerical reconstruction of DHM, an approach called polychromatic DHM (P-DHM), providing OPD images with drastically decreased coherent noise, was developed. Results: When applied to cultured neuronal networks with an air microscope objective ( 20 × , 0.8 NA), P-DHM shows a coherent noise level typically corresponding to 1 nm at the single-pixel scale, in agreement with the 1 / N -law, allowing to readily visualize the 1 - µ m -wide thin neuronal processes with a signal-to-noise ratio of ∼ 5 . Conclusions: Therefore, P-DHM represents a very promising label-free technique to study neuronal connectivity and its development, including neurite outgrowth, elongation, and branching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA